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Abstract

Global shutter controlled
during exposure time

Video cameras are invariably bandwidth limited and this
results in a trade-off between spatial and temporal resolu-
tion. Advances in sensor manufacturing technology have
tremendously increased the available spatial resolutibn o : pow——— :
modern cameras while simultaneously lowering the costs of \fastmovingscene integration timet  Captured modulated low-speed frames
these sensors. In stark contrast, hardware improvements (=
in temporal resolution have been modest. One solution
to enhance temporal resolution is to use high bandwidth Reconstruction algorithm
imaging devices such as high speed sensors and camera ar- employing video priors
rays. Unfortunately, these solutions are expensive. An al-
ternate solution is motivated by recent advances in compu- <
tational imaging and compressive sensing. Camera designsrigure 1.Flutter Shutter Video Camera (FSVC): The exposure
based on these principles, typically, modulate the incgmin duration of each frame is modulated using an independent pseudo-
video using spatio-temporal light modulators and capture random binary sequence. The captured video is a multiplexed ver-
the modulated video at a lower bandwidth. Reconstruction sion of the original video voxels. Priors about the video are used
algorithms, motivated by compressive sensing, are subseto then reconstruct the high speed video from FSVC observations.
quently used to recover the high bandwidth video at high fi-

delity. Though promising, these methods have been limite . . . .
since they require complex and expensive light modulator;,irhe escalatmg demand is forcmg m.anufactu_res toincrease
the complexity of the readout circuit to achieve a greater

that make the techniques difficult to realize in practice. . . o
inthi g that a simol ded P d bandwidth. Unfortunately, since the readout circuit share
N this paper, we show that a simple coded exposure mod-5 o5 ity the light sensing element of sensors, this usually

ulation 'Sthsug'lc't?m g;] r?tcor:/s;ructcmgh spelfg\)/édgos. hWﬁ results in smaller pixel fill-factors and consequently restl
propose the Flutter Shutter Video Camera ( ) In whic signal-to-noise ratio. Further, additional circuit elarse

.e%Ch exgosure of éhe segsor IS temporallsy Cﬁded USING ayagyit in increased cost. This is why even high resolution
independent pseudo-random sequence. Such exposure Cofiiia| cameras capture videos at reduced spatial resaluti

ing is easily achieved in modern sensors and is already 850 that the effective bandwidth is constrained. While this

feature of several machine vision cameras. We also deveIOpspatio—temporaI resolution trade-off seems fundameitial
two algorithms for reconstructing the high speed video; the fact that videos have redundancies implies that this ba’md—

first based on minimizi_ng the total variation of the spatio- width limit is artificial and can be surpassed. In fact, it is
temporal slices of the video and the second based on a datgy . redundancy of videos that enables compression algo-

dn;/_en dlctlc_)narlytbzse_((jj approxcljmatllor(;. tW? p_ﬁrfotrmt e\{ﬁl' rithms to routinely achiev@5 — 50x compression without
uation on simulated videos and real data to illustrate the any perceivable degradation.

robustness of our system. Advances in computational cameras and compressive
sensing have led to a series of compressive video acquisi-
. tion devices that exploit this redundancy to reduce the band
1. Introduction width required at the sensor. The common principle behind
Video cameras are inarguably the highest bandwidth all of these designs is the use of spatio-temporal light modu
consumer device that most of us own. Recent trends ardators and/or exposure control in the imaging system so that
driving that bandwidth higher as manufacturers develop the captured video is a multiplexed version of the original
sensors with even more pixels and faster sampling ratesvideo voxels. If the multiplexing is suitably controllethen
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appropriate reconstruction algorithms that exploit the re Motion deblurring: The ideas in this paper are closely re-
dundancy in the videos can be used to recover the high resolated to computational cameras first developed for the mo-
lution/high frame-rate video. One such technique is the sin tion deblurring problem. In motion deblurring [8, 13, 18],
gle pixel camera [6] which reduced the bandwidth required the goal is to recover a sharp image and the blurring kernel
for image acquisition using a random spatial modulation. given a blurred image. Of particular interest, is the Flut-
More recently, there have been a series of imaging architecter Shutter Camera [18] where the point spread function of
tures [4,9,10,12,19, 20, 22] that have proposed various al-the motion blur is shaped by coding the shutter during the
ternative ways to compressively sense high speed/respluti exposure; this removes nulls in the point spread function
videos. While many of these techniques show promising re-and regularizes the otherwise ill-conditioned forwardgma
sults, they mostly suffer from the same handicap: the hard-ing process. An alternative architecture [13] uses parabol
ware modifications required to enable these systems is ei-motion of the sensor to achieve a well conditioned point
ther expensive/cumbersome or is currently unavailable. Inspread function. While these approaches are only applica-
this paper, we propose the Flutter Shutter Video Camerable to a small class of scenes that follow a motion model,
(FSVC), in which the only light modulation is the coded there is a fundamental difference between video sensing and
control of the exposure duration in each frame of the cap- deblurring. Deblurring seeks to recovesiagleimage and
tured video. FSVC is, in spirit, similar to many of these an associated blur kernel that encodes this motion. In con-
above-mentioned techniques, but unlike those technidques itrast, video sensing attempts to recover multiple framels an
is a simple modification to current digital sensors. In fact, hence, seeks a richer description of the scene and provides
not only are there many machine vision cameras that al-the ability to handle complex motion in natural scenes.
ready have this ability (e.g., Point Grey Dragonfly2), alnos

all CMOS and CCD sensors can be adapted easily to controlfemporal super-resolution: Video compressive sensing

the exposure duration. (CS) methods rely heavily on temporal super-resolution
methods. Mahajaret al. [15] describe a method for
Contributions: The contributions of this paper are plausible image interpolation using short exposure frames

But such interpolation based techniques suffer in dimly lit
e We show that simple exposure coding in a video cam- scenes and cannot achieve large compression factors.

era can be used to recover high speed video sequences

while reducing the high bandwidth requirements of Cameraarrays: There have been many methods to extend

traditional high speed cameras. idﬁas _in timporal_sluper-resollutior; toﬁm_ultipleI cargerbas—

. erein the spatial-temporal tradeoff is replaced by a

¢ x}/ge(s)hor\il;/)rtsh(?;ndgteaulsned;?oernriecr;:/:rri]l? ?ﬁéar;?ehpgnggg amera-temporal tradeoff. Shechtnetral. [21] used mul-
video !‘Orom the captured FSVC framesg gnsp tiple cameras with staggered exposures to perform spatio-

' temporal super-resolution. Similarly, Wilbuet al. [24]
e We discuss the invertibility and compression achiev- ysed a dense array of sevesal fps cameras to recover a

able by various multiplexing schemes for acquiring 1000 fps video. Agrawalet al. [2] improved the perfor-

high speed videos. mance of such staggered multi-camera systems by employ-
ing per-camera flutter shutter. While capturing high speed
2 Related Work video using camera arrays produces high quality results

. o (especially for scenes with little or no depth variations),
The proposed FSVC relies on numerous algorithmic and gch camera arrays do come with significant hardware chal-
architectural modifications to existing techniques. lenges. Another related technique is that of Ben-Ezra and
Nayar [3] who built a hybrid camera that uses a noisy high
High speed cameras: Traditional high speed cameras re- frame rate sensor to estimate the point spread function for
quire sensors with high light sensitivity and massive data deblurring a high resolution blurred image.
bandwidth—both of which add significantly to the cost of
the camera. The massive bandwidth, caused by the larggCompressive sensing of videos: There have been many
amount of data sensed over a short duration, typically re-novel imaging architectures proposed for the video CS
quires a dedicated bus to the sensor [1]. High-performanceproblem. These include architectures that use coded aper-
commercial systems such as the FastCam SA5 can reackure [16], a single pixel camera [6], global/flutter shutter
a frame-rate of aboutO0K fps at spatial resolution of [11,22] and per-pixel coded exposure [12,19].
320 x 192, but cost abou$300K [1]. In contrast, the FSVC For videos that can be modeled as a linear dynamical
significantly mitigates the dual challenges of light sensi- system, [20] uses a single pixel camera to compressively
tive sensors and data bandwidth by integrating over a muchacquire videos. While this design achieves a high compres-
longer exposure time; this naturally increases the sigmal- sion at sensing, it is limited to a rather small class of vadeo
noise ratio and reduces the bandwidth of the sensed data. that can be modeled as linear dynamical. In [22], the flutter



shutter (FS) architecture is extended to video sensing anc
is used to build a camera system to capture high-speed pe
riodic scenes. Similar to [20], the key drawback of [22] is
the use of a parametric motion model which severely limits
the variety of scenes that can be captured. The video sens
ing architecture proposed by Harmagiyal. [11], employs
a coded aperture and an FS to achieve CS “snapshots” fo
scenes with incoherent light and high signal-to-noiseorati
In contrast, the proposed FSVC, which also employs an FS,
can be used to sense and reconstruct arbitrary videos.
Recently, algorithms that employ per-pixel shutter con-
trol have been proposed for the video CS problem. Bub
al. [4] proposed a fixed spatio-temporal trade-off for cap-
turing videos via per-pixel modulation. Gupg al. [10]
extended the notion to flexible voxels allowing for post-
capture spatio-temporal resolution trade-off. &ual. [9]
modify CMOS sensors to achieve a coded rolling shutter
that allows for adaptive spatio-temporal trade-off. Reddy
et al. [19] achieve per-pixel modulation through the use of
an LCOS mirror to sense high-speed scenes; a key prop-
erty of the associated algorithm is the use of optical flow-
based reconstruction algorithm. In a similar vein, Hitomi
et al. [12] use per-pixel coded exposure, but, with an over-
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complete dictionary to recover patches of the high speedgig e 2 FSvC Architecture: Every captured frame is a sum of
scene. The use of per-pixel coded exposure leads to powers pseudo-random sampling of sub-frames.

ful algorithms capable of achieving high compressions even
for complex scenes. Yet, hardware implementation of the
per-pixel coded exposure is challenging and is a significant
deviation from current commercial camera designs. In con-
trast, the FSVC only requires a global shutter control; this
greatly reducing the hardware complexity needed as com-
pared to systems requiring pixel-level shutter controktsu
exposure coding is easily achieved in modern sensors and
already a feature of several machine vision cameras.

Thus, for FSVC to work reliably, it is pertinent that both
properties are satisfied and that several successive edptur
frames are available during the decoding process.
stands in contrast with other methods such as [10] and [12]
where motion information can be encoded within a single
_frame by independently changing the exposure time for dif-
Yerent pixels.

This

3.1. Notation and problem statement

3. The Flutter Shutter Video Camera

Letx be a high speed video of sidé x N x T"and letz;

Flutter shutter (FS) [18] was originally designed as away ¢ he frame captured at timeA conventional high speed

to perform image deblurring when an object moves with
constant velocity within the exposure duration of a frame.

camera can capture directly, whereas a low speed video
camera cannot capture all of the desired frames ifihere-

Since FS was essentially a single frame architecture ther%re’ low speed cameras either resort to a short exposure

was very little motion information that could be extracted
from the captured frame. Therefore, linear motion [18] or

video (in which the resultant frames are sharp, but noisy) or

- , ) to a full-frame exposure (which results in blurred images).
some other restrictive parametric motion model [5] needs |, either case, the resulting video is of si¥ex N x (

T/c)

to be assumed in order to deblur the image. In contrast, we, hare. is the temporal sub-sampling factor. In the FSVC,

extend the FS camera into a video camera by acquiring a se
ries of flutter shuttered images with changing exposure code,
in successive frames. The key insight is that, this captured
coded exposure video satisfies two important properties,

1. Since each frame is a coded exposure image, image de
blurring can be performed without loss of spatial reso-
lution if motion information is available.

2. Multiple coded exposure frames enable motion infor-

S
three cases, the observed video framesre related to the
high speed sub-framas as

we open and close the shutter using a binary pseudorandom

equence within the exposure duration of each frame. In all

tic

>

t=(t;—1)c+1

Yy, = S(t)zy + ny,, 1)

mation to be extracted locally. This allows us to handle whereS(t) € {0, 1} is the binary global shutter function,

complex and non-uniform motion.

is the sub-frame of at timet, andn,, is observation noise
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Figure 3.Total Variation Prior: The first row shows example frames from four different videos oféasing complexity in motion. The
second and third rows show the XT and the YT slices for these videosclias from the XT and the YT slices that there are very few
high gradients and therefore minimizing total variation on the XT and YT sl&@® appropriate prior for videos. Further, our mixing
matrix essentially punches holes in the temporal dimension, i.e., sonseofdie XT-YT slices are completely missing in the observations
(corresponding to shutter being closed). Therefore, it is importansécaulong sequence of XT and YT slice in order to perform the
reconstruction. Also notice that edges in the XT and YT slices encodeityelnformation. For small compression factors and slow
moving scenes, local regions of the video can be approximated usig fimeion.

modeled as additive white Gaussian noise. For a full expo-video priors to enable stable reconstructions.
sure camer®'(t) = 1, V t, while for short exposure video

S(t) is 1 only for one time instant within each captured 4.1.Video Priors

frame. Our goal is to modify the global shutter function
and recover all sub-frames of that are integrated during
exposure. Since the observed pixel intensitiese a linear
combination of the desired voxelswith weights given by

S corrupted by noise, equation (1) can be written in matrix
form as

Solving the under-determined system in equation (2)
requires additional assumptions. These assumptions have
typically taken the form of video priors. There are essen-
tially two distinct forms of scene priors that have been used
in the literature so far.

y=8x+n, @ Data-independent video priors: One of the most

where S is a matrix representing the modulation by the common video priors used for solving ill-posed inverse
global shutter and the observation noisés the same size  problems in imaging is that the underlying signal is sparse
asy. While the modulation of the shutter affects all pix- in some transform basis such as the wavelet basis. This has
els, the pattern of modulation need not be the same for eactbeen shown to produce effective results for several prob-
integration time. lems such as denoising and super-resolution [7]. In the case

Equations 1 and 2 hold for ath x m x 7 patches of a  of video, apart from wavelet-sparsity one can also exploit
video, so the same notation will be used for patches and thethe fact that consecutive frames of the video are related by
full video. Unless otherwise mentioned, all equationsirefe scene or camera motion. In [19], it is assumed that (a) the
to a patch of the video. Let andy represent the vectorized Vvideo is sparse in the wavelet domain, and (b) optical flow
form of the desired high-speed voxelge.g. 8x 8 x 24) computed via brightness constancy is satisfied between
and the observed voxels(e.g. 8x 8 x 3) respectively.  consecutive frames of the video. These two sets of con-
The observed videg has significantly fewer entries than straints provide additional constraints required to ragné
the desired true videa resulting in an under-determined the problem. Another signal prior that is data-independent

linear system. and is widely used in image processing is the total variation
. ) regularization. A key advantage with total variation-tshse
4. Reconstruction algorithms methods is that they result in fast and efficient algorithms

Frames captured using the FSVC are a linear com-for video reconstruction. Therefore, we use total varia-
bination of sub-frames with the desired temporal resolu- tion as one of the algorithms for reconstruction in this pape
tion. Given that the number of equations (observed intensi-
ties) recorded using the FSVC architecture is significantly Data-dependent video priors: In many instances,
smaller than the desired video resolution, direct inversio the results obtained using data-independent scene priors
of the linear system is severely underconstrained. Indpire can be further improved by learning data dependent
by advances in compressive sensing, we advocate the use aver-complete dictionaries [7]. In [12], the authors assum
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Figure 4.Results of Flutter Shutter Video Cameraon a video of a toy bike translating with uniform velocity using TV reconstructio
The top row shows one frame of the reconstructed video for variompassion factors. As the compression factor increases, the output
degrades gracefully. The bottom two rows show the rotated XT and thdid€E sorresponding to the column and row marked yellow and
green in the first row. The XT and YT slices clearly show the quality of thepteral upsampling.

that patches of the reconstructed video are a sparse lineacovered by averaging the solutions of the two optimization
combination of elements of an overcomplete dictionary; problems.

this serves as a regularizing prior. We use a data-dependent Total variation generally favors sparse gradients. When
over-complete basis as a regularizer and show performancehe video contains smooth motion, the spatio-temporal gra-
superior to total variation-based methods especially whendients in the video are sparse, enabling TV reconstruction
the compression factor is smalk( 8). The problem  to successfully recover the desired high-speed video. Re-
with using data-dependent regularization for very large covering the high speed video using spatio-temporal slices
compression factors is that the learned patch dictionaryof the video cube can thus be executed quickly and effi-
has to be much larger than that used in [12] since, asciently. A256 x 256 x 72 video channel with a compression
discussed earlier, the mixing matrix for FSVC is more factor of 4x can be reconstructed in less than a minute us-
ill-conditioned than the mixing matrix in [12] and [19]. ing MATLAB and running on a 3.4GHz quad-core desktop
Handling such large dictionary sizes is computationally computer. Further, the algorithm is fast and efficient and de
infeasible and therefore, we use the total variation-basedgrades smoothly as the compression rate increases as shown
prior for handling larger compression factors. in Figure 4.

4.2. Total Variation (TV) of XT and YT Slices 4.3. Data driven dictionary-based reconstruction

Shown in Figure 3 are four different videos with increas- ~ While total variation-based video recovery results in a
ing complexity of motion. The second and third row of the fast and efficient algorithm, promising results from Hit-
figure shows the XT and the YT slices corresponding to the omi et al. [12] indicate that significant improvement in re-
four videos in the first row. In spite of the complexity of the construction quality may be obtained by using data driven
scene and the motion involved in these videos, it is cledr tha dictionaries as priors in the reconstruction process. €inc
the XT and the YT slices are indeed nothing but deformed the mixing matrix produced by FSVC is far more ill-
versions of images—the deformation being a function of conditioned than that in [12], we need to learn patches that
3D structure and non-uniform velocity of the scene. It is are larger in both spatial and temporal extent. Motion in-
also apparent, that just like images, the XT and YT slices of formation is recorded by consecutive observations; we use
videos are predominantly flat with very few gradients. Mo- four recorded frames to reconstruct the high speed video.
tivated by the sparse gradient distribution in natural iesag  When the compression rate is we learn video patches
minimal total variation has been used very successfully as athat arel8 x 18 x 4c pixels. As the compression rate in-
prior for images [17, 23] for various problems like denois- creases, we need to learn patches that are larger both in spa-
ing and deblurring. Similarly, we use minimal total varia- tial and temporal extents, so that the spatio-temporalredu
tion in the XT and YT slices as a prior for reconstructing dancy can be exploited. Unfortunately, learning dictienar
the XT and YT slices from the observations. Needless to ies is computationally infeasible as the dimension in@esas
say, 3D total variation will probably work even better, but and so we limit the use of data-driven priors for compres-
we stick to 2D total variation on XT and YT slices, since sion factors less tha®. Using data-driven (DD) priors for
this results in a much faster reconstruction algorithm. We such low compression factors resulted in a significant per-
use Tval3 [14] to solve the ensuing optimization problem formance improvement over total variation minimization.
on both the XT and YT slices; the high-speed video is re- In the future, as algorithms for dictionary learning become



Speed = 1.38 px/frame
8 =6l =

r ]
DD

GT 4x
PSNR (dB) 39.6

30, he E g
B 0.15 » &
Us21 erTor T o ©
ly—sPoa)’ § 0.08 \_ PSNR(dB) 348 275 )
iyl o v, error: Figure 6.Reconstruction quality vs compression. Left: As
i 0.12 the compression factor increases, the quality of reconstruction de-
Speed” Y - o -100“.51;‘2'66’55530“‘”" : creases. The DD reconstruction curve is limited to 7x. Both algo-
pixels/frame co 0 v* error: rithms are tested using the same input video of a hairnets adver-
‘v*. speed = 1.35, 0 = 63° 0.01 tisement trgnslatlng to the right; t_he TV reconstructl_on uses all 72
: = frames while the DD reconstruction only uses the first 24 frames
C Recovered high speed video PSNR: 31.0 dB (28 for 7x). Right: Frames from the reconstructed videos using

Frame

W

both DD (top) and TV based (bottom) algorithms.

which is18 x 18 x 28 resulting in a temporal upsampling
of ¢ = 7. For eachl8 x 18 x 4 patch from the FSVC video,
we estimate the best local velocity as

v* = argmin, ||y — SP,a,|3, v=1,...,521. (3)

Figure 5.DD Algorithm. A: A simulated video of a moving Lena

image _captured by the _FSV? with 6x compression, a ce}ptured is the observation matrix defined by the flutter shutter code,
frame is shown on the rightB: Local velocities are determined

using equation 3. Overall, the error in the measurement space isP” IS the principal Compongnt BASIS for kA Ve.IO.C'ty' b
smooth and achieves its minimum value at the closest velocity in ®v is the least squares estimates of the coefficients denoted

the database to the actual motion. The error in one frame for threebY @ = (SP,)'y, wheret represents the pseudo-inverse.

highlighted velocities is shown on the right. Error quickly rises for Figure 5B shows that the error is much smaller for veloci-
velocities not neav* yielding errors that are an order of magni- ties near the true patch velocity and quickly rises for other
tude larger.C: Four frames of the recovered high speed video are velocities. Finally, each patch is reconstructed as

shown.

In equation (3),y is the vectorized observation patc8,

. . . X = Pv*av* . (4)

more robust and computationally efficient, we expect that
suqh (_jata—driven priors will indeed perform better thaaltot  The recovered high speed video in Figure 5C demonstrates
variation. the high quality reconstruction that can be achieved using

In implementing data-driven dictionaries, we make two the DD algorithm. After reconstructing each patch in the
small adaptations to the traditional diCtionary |earni|ﬂ@ a Observation, Over|apping pixe|s are averaged to gend]'atet
sparse approximation algorithms. First, we extract the-pri  reconstructed high speed video. Recovering a high speed
cipal components for each velocity independently. We  vyideo with this algorithm is considerably slower than the
achieve this by taking images and translating them by theT\/.pased reconstruction, 262 x 252 x 28 video chan-
appropriate Ve|0CitW to create artificial videos which con- nel with a Compression factor of 7x takes approximate|y
tain scene elements that moving at the desired velocity.5 minutes using the same computation setup described in
Then we extract patches of siz8 x 18 x 28 from these  Section4.2. The more pressing issue, is that such a data-
videos. For each velocity, we learn the tof324 princi-  driven method suffers from two disadvantages especially
pal components, and create a principal component matrix,when handling large compression factors: (1) learning is
P,. In practice we generated a total @1 velocities, sam-  prohibitively slow, and (2) the locally linear motion as-
pling heading direction uniformly at 9 degrees and varying sumption is violated when the temporal extent of patches
the speed from 0.15 pixels/frame to 1.95 pixels/frame (re- hecomes longer. In practice, we notice that this algorithm

sulting in blur of up tol.95 x ¢ pixels/captured frame). The  results in significant improvement over total variation for
static motion case is also included. Thus, there are a tbtal 0 small compression factors.

521 principal component matrices,. )

For example, for a given compression rate-cf 7, we 9. EXperiments
takel8 x 18 x 4 patches from the captured FSVC video. For ~ We evaluate the performance of FSVC through simula-
each such patch we recover a high temporal resolution patchions on videos with frame rates 20 — 1000 fps. We also



DD basis reconstruction—4 observations, 28 frames recovered \

TV-based reconstruction—12 observations, 84 frames recovered
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Figure 8.Experimental Results. Observation images with a spatial resolutior2df x 306 were captured at 7 frames per second with a
compression factor of 7XTop: Four frames of a book being pulled to the left are captured by FSVGstigigpartifacts can be observed
in the outset. The high speed video is reconstructed using the DD algoritthonanframe is shown. The outset shows that the ghosting
has been remove@®ottom: A toy robot is moved to the right along a non-linear path, 12 observati@ensagptured using FSVC. Ghosting
of the fine details on the robot can be seen in the outset. Reconstructiatonasvith the TV algorithm and one frame of the output is
shown. The outset shows that fine details have been preserved.

4o_econstucton Gualtyve. Observation Noise (72 Coded FSVC I Viation, o = 0025' and the eXpOSUre code is held con-

e ' e L em stant. The observed videos have a PSNR-af4 dB. The
Somepm| | K effect of increasing the compression on the quality of the
P . recovered video is highlighted in Figure 4. As the tempo-

ral super-resolution increases, FSVC retains fewer dyoami
weak edges but faithfully recovers large gradients leading
to a graceful degradation of video quality. Notice, in Feur
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* M. - = = 4, that the hub caps of the wheels of the bike are present
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IR T e TR S 300 dB T, in the reconstructed video even as the compression is in-

creased to a factor of 18. FSVC has a high spatial resolu-
Figure 7.Reconstruction quality vs. noise. Left:As the standard  tion that allows slowly moving weak edges to be preserved
deviation of the observation noise increases, the reconstructionin the video reconstruction. Shown in the plot in Figure 6,
quality of FSVC decays gracefully. Further the coding in FSVC s the reconstruction PSNR of both algorithms as a function
provides a 4-5 dB performance improvement over short exposure of the compression rate. Notice that for low compression
Right: The same frame from the high speed video recovered us-factors, the data-driven algorithm performs better than to
ing both algorithms and when using FSVC; the quality degrades 5 yariation, since the locally linear motion assumptien i
slowly with the addition of few visible artifacts. not violated. As the compression factor increases, the peak

) ) ) signal-to-noise ratio (PSNR) of the reconstructed video de
capture data using a Point Grey Dragonfly2 video cameracays gracefully for the TV-based algorithm. The ability to
and reconstruct using both algorithms. retain very high quality reconstructions for static/netatic

Effect of compression rate: We first test the robustness elements_ of the scene a_nd the graceful degradation of the
of our algorithms through simulation. Simulated observa- 1V @gorithm, both of which are apparent from the recon-

tions are obtained by sampling a high speed ground truthstrucjcions of the hgirnet advertisement vidgo in.Figurer@, a
video using the forward process of equation (2). To test very important attributes of any compressive video camera.
the robustness of our algorithm at varying compression fac-

tors, we use a video of hairnets advertisement moving from Robustness to observation noiseFigure 7 shows the ef-
right to left with a speed of- 0.5 pixels per frame (video fects of varying levels of noise on the fidelity of recon-
credit: Amit Agrawal). The input video has values in the struction for both the DD and TV algorithms. The same
range[0, 1], the observation noise has a fixed standard de-hairnets video is used as the ground truth and the standard
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deviation of the noise varies from025 to 0.125 in incre- e motinmotin SPCISl CSADS oy PIC2 CPEV. (G T
ments of.025. This corresponds to a range of PSNRS from pmaman | oo - S

reduction No No No Yes Yes Yes Yes Yes Yes Yes

20.8 — 34.8 dB. The compression factor has been fixed at "y

. . . R R Linear ~ Linear  Linear ~ None LDS  Periodic  None None Linear ~ None
7x. In this experiment, we compare the quality of the high Si.l" Motion  Motion
speed video recovered from images captured using FSVC "ermtien msitude diection

LU Simple  Simple Simple Complex Complex Simple Complex Medium Medium  Simple

and a standard video camera using a short exposure. Th e

Commercial

short exposure video is created by modifying the temporal =i o B N - S m::mp .
code used irB to have a singld for the same time instant ~ aruw 0% 10 00 0% 0% 0% 0% )
t during each exposure. The coded frames and short ex- "i?)w 1 1 ISk 2000 ~B0x ~32x N~k ~(I2x
posure frames are reconstructed using the DD and TV al-

gorithms. As expected for a low-speed and approximately gigre 9. comparison of the qualitative properties of compressive
linear scene, the DD algorithm reconstruction is of higher ¢omputational video cameras.

quality than the TV reconstruction. This experiment shows

None  None None None None None None None

60%

two observations: (1) degradation of the FSVC reconstruc- Compression| P2C2| CPEV FSVC
tion is graceful in the presence of noise and (2) FSVC cod- Vs PSNR (dB)| [19] [12] | (this paper)
ing improves the fidelity of reconstruction by approximgtel 4 415 | 418 356
5 dB compared to simple short exposure (at a compression 8 374 | 388 331
rate ofc = 7). 12 342 | 36.0 298

18 312 | 345 29.1

Experiments on real data: The FSVC can be implemented

using the built-in functionality of the Point Grey Dragorlly  Taple 1.Comparison of compression vs reconstruction PSNR
video camera. The coded exposure pattern is provided us- in dB for compressive video acquisition architectures in the ab-
ing an external trigger. Due to inherent limitations impse  sence of observation noise. FSVC is a much simpler hardware
by the hardware, images were captured at 7 frames per secarchitecture than either P2C2 or CPEV, but it results in reasonable
ond with a compression factor of 7x. Hence, our goal is to performance.

obtain a working 49 frames per second camera by capturingyision cameras making it easy to implement. It improves
7 framgs per second coded videos. Figure 8 shows the '”puﬁght throughput of the system compared to acquiring a short
coded images collected by the camera, and frames of thgyposure low frame-rate video or [12] and allows acquisi-
reconstructed video using the TV and DD algorithms. The tion at |ow light levels. These are significant advantages
top row of Figure 8 shows one observation frame recordedgjnce the prohibitive cost of high-speed imagers is due to
with FSVC of a book moving to the left. Ghosting arti-  the requirement for high bandwidth and high light sensitiv-
facts in the observation frame demonstrate that using a tra~|ty' Figure 9 highlights these advantages of our imaging
ditional video camera with the same framerate would result 5 chitecture as well as places it in a larger context of com-

in a blurry video. We recovered a high-speed video using pytational cameras developed over the last decade.
the DD methods; as expected, the recovered video correctly
interpolated the motion and removes the ghosting artifacts Limitations: FSVC exploits the spatio-temporal redun-

A second dataset was captured of a toy robot moving dancy in videos during the reconstruction phase of the al-
with non-uniform speed. One captured frame from this gorithm. Scenes that do not have spatio-temporal redun-
dataset is shown in Figure 8 (bottom-left). The outset showsdancy such as a bursting balloons cannot be handled by the
an enlarged view of a blurry portion of the observed frame. camera. Since the spatio-temporal redundancy exploited by
Figure 8 (bottom-right) shows one frame from the recon- traditional compression algorithms and our imaging archi-
structed video and the outset shows the corresponding entecture are very similar, as a rule of thumb one can assume
larged section of the recovered frame. Notice that the blur-that scenes that are compressed efficiently can be captured
ring is significantly reduced but since the motion of the toy well using our method. FSVC uses a coded exposure and
is quite large, there is still some residual blurring in tee r  this causes a 33% reduction in light throughput since we
constructed video. use codes that are open 67% of the time.

6. Discussions and Conclusions Global vs per-pixel shutter: The proposed FSVC comes
as an advancement over two recently proposed computa-

tional cameras [12, 19] that use a per-pixel shutter. The

per-pixel shutter control enables different temporal sode

at different pixels. In contrast, in our design, the contl

the shutter is global and, hence, all pixels share the same
LExposure mode 5 is used to control the timing and duration ofipelt ~ t€Mporal code. At first glance, this might seem like a small

exposures within each integration time of the camera. difference—yet, the implications of this are profound.

Benefits: Our imaging architecture provides three advan-

tages over conventional imaging. It significantly reduces
the bandwidth requirement at the sensor. It exploits expo-
sure coding which is already a feature of several machine




A global shutter leads to ill-conditioned measurement [9]
matrix. An easy way to observe this is to study proper-
ties of the adjoint operator of the measurement matrix de-
fined in equation (2). The adjoint of an observed video
is a high-resolution video with zeros for frames at time- [10]
instants when the shutter is closed. The abrupt transition
from the video signal to the nulls introduces high temporal
frequencies. Hence, the adjoint operator is highly coheren [11]
to high frequency patterns and is predisposed to selecting
high-frequency atoms when used with a sparse approxima-
tion algorithm (as in [12]). In contrast, the adjoint operat [12]
associated with both the P2C2 and CPEV [12] are less co-
herent with such bases. Hence, it is much easier to obtain
higher quality reconstructions with these. Shown in Table
1 is a comparison of reconstruction performance using [13]
different modulation schemes, per-pixel flutter shutteinas
P2C2 [19], per pixel single short exposure as in [12] and
global flutter shutter video camera as proposed in this pa—[14]
per. It is clear that the simple and easy to implement archi-
tecture of FSVC results in reconstruction performance that[ 1
is about 6 dB lower per-pixel coding architectures. Further
these experiments did not include observation noise. Since
CPEV has a very low light throughput fcompression), the
performance of CPEV will degrade significantly (compared [16]
to P2C2 and FSVC) in the presence of noise especially in
dimly lit scenes. [17]
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