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Abstract

Video cameras are invariably bandwidth limited and this
results in a trade-off between spatial and temporal resolu-
tion. Advances in sensor manufacturing technology have
tremendously increased the available spatial resolution of
modern cameras while simultaneously lowering the costs of
these sensors. In stark contrast, hardware improvements
in temporal resolution have been modest. One solution
to enhance temporal resolution is to use high bandwidth
imaging devices such as high speed sensors and camera ar-
rays. Unfortunately, these solutions are expensive. An al-
ternate solution is motivated by recent advances in compu-
tational imaging and compressive sensing. Camera designs
based on these principles, typically, modulate the incoming
video using spatio-temporal light modulators and capture
the modulated video at a lower bandwidth. Reconstruction
algorithms, motivated by compressive sensing, are subse-
quently used to recover the high bandwidth video at high fi-
delity. Though promising, these methods have been limited
since they require complex and expensive light modulators
that make the techniques difficult to realize in practice.

In this paper, we show that a simple coded exposure mod-
ulation is sufficient to reconstruct high speed videos. We
propose the Flutter Shutter Video Camera (FSVC) in which
each exposure of the sensor is temporally coded using an
independent pseudo-random sequence. Such exposure cod-
ing is easily achieved in modern sensors and is already a
feature of several machine vision cameras. We also develop
two algorithms for reconstructing the high speed video; the
first based on minimizing the total variation of the spatio-
temporal slices of the video and the second based on a data
driven dictionary based approximation. We perform eval-
uation on simulated videos and real data to illustrate the
robustness of our system.

1. Introduction
Video cameras are inarguably the highest bandwidth

consumer device that most of us own. Recent trends are
driving that bandwidth higher as manufacturers develop
sensors with even more pixels and faster sampling rates.

Figure 1.Flutter Shutter Video Camera (FSVC): The exposure
duration of each frame is modulated using an independent pseudo-
random binary sequence. The captured video is a multiplexed ver-
sion of the original video voxels. Priors about the video are used
to then reconstruct the high speed video from FSVC observations.

The escalating demand is forcing manufactures to increase
the complexity of the readout circuit to achieve a greater
bandwidth. Unfortunately, since the readout circuit shares
area with the light sensing element of sensors, this usually
results in smaller pixel fill-factors and consequently reduced
signal-to-noise ratio. Further, additional circuit elements
result in increased cost. This is why even high resolution
digital cameras capture videos at reduced spatial resolution
so that the effective bandwidth is constrained. While this
spatio-temporal resolution trade-off seems fundamental,the
fact that videos have redundancies implies that this band-
width limit is artificial and can be surpassed. In fact, it is
this redundancy of videos that enables compression algo-
rithms to routinely achieve25 − 50x compression without
any perceivable degradation.

Advances in computational cameras and compressive
sensing have led to a series of compressive video acquisi-
tion devices that exploit this redundancy to reduce the band-
width required at the sensor. The common principle behind
all of these designs is the use of spatio-temporal light modu-
lators and/or exposure control in the imaging system so that
the captured video is a multiplexed version of the original
video voxels. If the multiplexing is suitably controlled, then



appropriate reconstruction algorithms that exploit the re-
dundancy in the videos can be used to recover the high reso-
lution/high frame-rate video. One such technique is the sin-
gle pixel camera [6] which reduced the bandwidth required
for image acquisition using a random spatial modulation.
More recently, there have been a series of imaging architec-
tures [4, 9, 10, 12, 19, 20, 22] that have proposed various al-
ternative ways to compressively sense high speed/resolution
videos. While many of these techniques show promising re-
sults, they mostly suffer from the same handicap: the hard-
ware modifications required to enable these systems is ei-
ther expensive/cumbersome or is currently unavailable. In
this paper, we propose the Flutter Shutter Video Camera
(FSVC), in which the only light modulation is the coded
control of the exposure duration in each frame of the cap-
tured video. FSVC is, in spirit, similar to many of these
above-mentioned techniques, but unlike those techniques it
is a simple modification to current digital sensors. In fact,
not only are there many machine vision cameras that al-
ready have this ability (e.g., Point Grey Dragonfly2), almost
all CMOS and CCD sensors can be adapted easily to control
the exposure duration.

Contributions: The contributions of this paper are

• We show that simple exposure coding in a video cam-
era can be used to recover high speed video sequences
while reducing the high bandwidth requirements of
traditional high speed cameras.

• We show that data independent and data-dependent
video priors can be used for recovering the high speed
video from the captured FSVC frames.

• We discuss the invertibility and compression achiev-
able by various multiplexing schemes for acquiring
high speed videos.

2. Related Work
The proposed FSVC relies on numerous algorithmic and

architectural modifications to existing techniques.

High speed cameras: Traditional high speed cameras re-
quire sensors with high light sensitivity and massive data
bandwidth—both of which add significantly to the cost of
the camera. The massive bandwidth, caused by the large
amount of data sensed over a short duration, typically re-
quires a dedicated bus to the sensor [1]. High-performance
commercial systems such as the FastCam SA5 can reach
a frame-rate of about100K fps at spatial resolution of
320× 192, but cost about$300K [1]. In contrast, the FSVC
significantly mitigates the dual challenges of light sensi-
tive sensors and data bandwidth by integrating over a much
longer exposure time; this naturally increases the signal-to-
noise ratio and reduces the bandwidth of the sensed data.

Motion deblurring: The ideas in this paper are closely re-
lated to computational cameras first developed for the mo-
tion deblurring problem. In motion deblurring [8, 13, 18],
the goal is to recover a sharp image and the blurring kernel
given a blurred image. Of particular interest, is the Flut-
ter Shutter Camera [18] where the point spread function of
the motion blur is shaped by coding the shutter during the
exposure; this removes nulls in the point spread function
and regularizes the otherwise ill-conditioned forward imag-
ing process. An alternative architecture [13] uses parabolic
motion of the sensor to achieve a well conditioned point
spread function. While these approaches are only applica-
ble to a small class of scenes that follow a motion model,
there is a fundamental difference between video sensing and
deblurring. Deblurring seeks to recover asingleimage and
an associated blur kernel that encodes this motion. In con-
trast, video sensing attempts to recover multiple frames and
hence, seeks a richer description of the scene and provides
the ability to handle complex motion in natural scenes.

Temporal super-resolution: Video compressive sensing
(CS) methods rely heavily on temporal super-resolution
methods. Mahajanet al. [15] describe a method for
plausible image interpolation using short exposure frames.
But such interpolation based techniques suffer in dimly lit
scenes and cannot achieve large compression factors.

Camera arrays: There have been many methods to extend
ideas in temporal super-resolution to multiple cameras—
wherein the spatial-temporal tradeoff is replaced by a
camera-temporal tradeoff. Shechtmanet al. [21] used mul-
tiple cameras with staggered exposures to perform spatio-
temporal super-resolution. Similarly, Wilburnet al. [24]
used a dense array of several30 fps cameras to recover a
1000 fps video. Agrawalet al. [2] improved the perfor-
mance of such staggered multi-camera systems by employ-
ing per-camera flutter shutter. While capturing high speed
video using camera arrays produces high quality results
(especially for scenes with little or no depth variations),
such camera arrays do come with significant hardware chal-
lenges. Another related technique is that of Ben-Ezra and
Nayar [3] who built a hybrid camera that uses a noisy high
frame rate sensor to estimate the point spread function for
deblurring a high resolution blurred image.

Compressive sensing of videos: There have been many
novel imaging architectures proposed for the video CS
problem. These include architectures that use coded aper-
ture [16], a single pixel camera [6], global/flutter shutter
[11,22] and per-pixel coded exposure [12,19].

For videos that can be modeled as a linear dynamical
system, [20] uses a single pixel camera to compressively
acquire videos. While this design achieves a high compres-
sion at sensing, it is limited to a rather small class of videos
that can be modeled as linear dynamical. In [22], the flutter



shutter (FS) architecture is extended to video sensing and
is used to build a camera system to capture high-speed pe-
riodic scenes. Similar to [20], the key drawback of [22] is
the use of a parametric motion model which severely limits
the variety of scenes that can be captured. The video sens-
ing architecture proposed by Harmanyet al. [11], employs
a coded aperture and an FS to achieve CS “snapshots” for
scenes with incoherent light and high signal-to-noise ratio.
In contrast, the proposed FSVC, which also employs an FS,
can be used to sense and reconstruct arbitrary videos.

Recently, algorithms that employ per-pixel shutter con-
trol have been proposed for the video CS problem. Bubet
al. [4] proposed a fixed spatio-temporal trade-off for cap-
turing videos via per-pixel modulation. Guptaet al. [10]
extended the notion to flexible voxels allowing for post-
capture spatio-temporal resolution trade-off. Guet al. [9]
modify CMOS sensors to achieve a coded rolling shutter
that allows for adaptive spatio-temporal trade-off. Reddy
et al. [19] achieve per-pixel modulation through the use of
an LCOS mirror to sense high-speed scenes; a key prop-
erty of the associated algorithm is the use of optical flow-
based reconstruction algorithm. In a similar vein, Hitomi
et al. [12] use per-pixel coded exposure, but, with an over-
complete dictionary to recover patches of the high speed
scene. The use of per-pixel coded exposure leads to power-
ful algorithms capable of achieving high compressions even
for complex scenes. Yet, hardware implementation of the
per-pixel coded exposure is challenging and is a significant
deviation from current commercial camera designs. In con-
trast, the FSVC only requires a global shutter control; this
greatly reducing the hardware complexity needed as com-
pared to systems requiring pixel-level shutter control. Such
exposure coding is easily achieved in modern sensors and is
already a feature of several machine vision cameras.

3. The Flutter Shutter Video Camera
Flutter shutter (FS) [18] was originally designed as a way

to perform image deblurring when an object moves with
constant velocity within the exposure duration of a frame.
Since FS was essentially a single frame architecture there
was very little motion information that could be extracted
from the captured frame. Therefore, linear motion [18] or
some other restrictive parametric motion model [5] needs
to be assumed in order to deblur the image. In contrast, we
extend the FS camera into a video camera by acquiring a se-
ries of flutter shuttered images with changing exposure code
in successive frames. The key insight is that, this captured
coded exposure video satisfies two important properties,

1. Since each frame is a coded exposure image, image de-
blurring can be performed without loss of spatial reso-
lution if motion information is available.

2. Multiple coded exposure frames enable motion infor-
mation to be extracted locally. This allows us to handle
complex and non-uniform motion.

Figure 2.FSVC Architecture: Every captured frame is a sum of
a pseudo-random sampling of sub-frames.

Thus, for FSVC to work reliably, it is pertinent that both
properties are satisfied and that several successive captured
frames are available during the decoding process. This
stands in contrast with other methods such as [10] and [12]
where motion information can be encoded within a single
frame by independently changing the exposure time for dif-
ferent pixels.

3.1. Notation and problem statement
Letx be a high speed video of sizeM×N×T and letxt

be the frame captured at timet. A conventional high speed
camera can capturex directly, whereas a low speed video
camera cannot capture all of the desired frames inx. There-
fore, low speed cameras either resort to a short exposure
video (in which the resultant frames are sharp, but noisy) or
to a full-frame exposure (which results in blurred images).
In either case, the resulting video is of sizeN ×N × (T/c)
wherec is the temporal sub-sampling factor. In the FSVC,
we open and close the shutter using a binary pseudorandom
sequence within the exposure duration of each frame. In all
three cases, the observed video framesytl are related to the
high speed sub-framesxt as

ytl =

tlc∑

t=(tl−1)c+1

S(t)xt + ntl
, (1)

whereS(t) ∈ {0, 1} is the binary global shutter function,xt

is the sub-frame ofx at timet, andntl
is observation noise



Figure 3.Total Variation Prior: The first row shows example frames from four different videos of increasing complexity in motion. The
second and third rows show the XT and the YT slices for these videos. It isclear from the XT and the YT slices that there are very few
high gradients and therefore minimizing total variation on the XT and YT slicesis an appropriate prior for videos. Further, our mixing
matrix essentially punches holes in the temporal dimension, i.e., some rows of the XT-YT slices are completely missing in the observations
(corresponding to shutter being closed). Therefore, it is important to use a long sequence of XT and YT slice in order to perform the
reconstruction. Also notice that edges in the XT and YT slices encode velocity information. For small compression factors and slow
moving scenes, local regions of the video can be approximated using linear motion.

modeled as additive white Gaussian noise. For a full expo-
sure cameraS(t) = 1, ∀ t, while for short exposure video
S(t) is 1 only for one time instant within each captured
frame. Our goal is to modify the global shutter function
and recover all sub-frames ofxt that are integrated during
exposure. Since the observed pixel intensitiesy are a linear
combination of the desired voxelsx with weights given by
S corrupted by noise, equation (1) can be written in matrix
form as

y = Sx+ n, (2)

whereS is a matrix representing the modulation by the
global shutter and the observation noisen is the same size
asy. While the modulation of the shutter affects all pix-
els, the pattern of modulation need not be the same for each
integration time.

Equations 1 and 2 hold for allm × m × τ patches of a
video, so the same notation will be used for patches and the
full video. Unless otherwise mentioned, all equations refer
to a patch of the video. Letx andy represent the vectorized
form of the desired high-speed voxelsx (e.g. 8× 8 × 24)
and the observed voxelsy (e.g. 8× 8 × 3) respectively.
The observed videoy has significantly fewer entries than
the desired true videox resulting in an under-determined
linear system.

4. Reconstruction algorithms
Frames captured using the FSVC are a linear com-

bination of sub-frames with the desired temporal resolu-
tion. Given that the number of equations (observed intensi-
ties) recorded using the FSVC architecture is significantly
smaller than the desired video resolution, direct inversion
of the linear system is severely underconstrained. Inspired
by advances in compressive sensing, we advocate the use of

video priors to enable stable reconstructions.

4.1. Video Priors

Solving the under-determined system in equation (2)
requires additional assumptions. These assumptions have
typically taken the form of video priors. There are essen-
tially two distinct forms of scene priors that have been used
in the literature so far.

Data-independent video priors: One of the most
common video priors used for solving ill-posed inverse
problems in imaging is that the underlying signal is sparse
in some transform basis such as the wavelet basis. This has
been shown to produce effective results for several prob-
lems such as denoising and super-resolution [7]. In the case
of video, apart from wavelet-sparsity one can also exploit
the fact that consecutive frames of the video are related by
scene or camera motion. In [19], it is assumed that (a) the
video is sparse in the wavelet domain, and (b) optical flow
computed via brightness constancy is satisfied between
consecutive frames of the video. These two sets of con-
straints provide additional constraints required to regularize
the problem. Another signal prior that is data-independent
and is widely used in image processing is the total variation
regularization. A key advantage with total variation-based
methods is that they result in fast and efficient algorithms
for video reconstruction. Therefore, we use total varia-
tion as one of the algorithms for reconstruction in this paper.

Data-dependent video priors: In many instances,
the results obtained using data-independent scene priors
can be further improved by learning data dependent
over-complete dictionaries [7]. In [12], the authors assume



Figure 4.Results of Flutter Shutter Video Cameraon a video of a toy bike translating with uniform velocity using TV reconstruction.
The top row shows one frame of the reconstructed video for various compression factors. As the compression factor increases, the output
degrades gracefully. The bottom two rows show the rotated XT and the YT slices corresponding to the column and row marked yellow and
green in the first row. The XT and YT slices clearly show the quality of the temporal upsampling.

that patches of the reconstructed video are a sparse linear
combination of elements of an overcomplete dictionary;
this serves as a regularizing prior. We use a data-dependent
over-complete basis as a regularizer and show performance
superior to total variation-based methods especially when
the compression factor is small (≤ 8). The problem
with using data-dependent regularization for very large
compression factors is that the learned patch dictionary
has to be much larger than that used in [12] since, as
discussed earlier, the mixing matrix for FSVC is more
ill-conditioned than the mixing matrix in [12] and [19].
Handling such large dictionary sizes is computationally
infeasible and therefore, we use the total variation-based
prior for handling larger compression factors.

4.2. Total Variation (TV) of XT and YT Slices

Shown in Figure 3 are four different videos with increas-
ing complexity of motion. The second and third row of the
figure shows the XT and the YT slices corresponding to the
four videos in the first row. In spite of the complexity of the
scene and the motion involved in these videos, it is clear that
the XT and the YT slices are indeed nothing but deformed
versions of images—the deformation being a function of
3D structure and non-uniform velocity of the scene. It is
also apparent, that just like images, the XT and YT slices of
videos are predominantly flat with very few gradients. Mo-
tivated by the sparse gradient distribution in natural images,
minimal total variation has been used very successfully as a
prior for images [17, 23] for various problems like denois-
ing and deblurring. Similarly, we use minimal total varia-
tion in the XT and YT slices as a prior for reconstructing
the XT and YT slices from the observations. Needless to
say, 3D total variation will probably work even better, but
we stick to 2D total variation on XT and YT slices, since
this results in a much faster reconstruction algorithm. We
use Tval3 [14] to solve the ensuing optimization problem
on both the XT and YT slices; the high-speed video is re-

covered by averaging the solutions of the two optimization
problems.

Total variation generally favors sparse gradients. When
the video contains smooth motion, the spatio-temporal gra-
dients in the video are sparse, enabling TV reconstruction
to successfully recover the desired high-speed video. Re-
covering the high speed video using spatio-temporal slices
of the video cube can thus be executed quickly and effi-
ciently. A256×256×72 video channel with a compression
factor of 4x can be reconstructed in less than a minute us-
ing MATLAB and running on a 3.4GHz quad-core desktop
computer. Further, the algorithm is fast and efficient and de-
grades smoothly as the compression rate increases as shown
in Figure 4.

4.3. Data driven dictionary-based reconstruction

While total variation-based video recovery results in a
fast and efficient algorithm, promising results from Hit-
omi et al. [12] indicate that significant improvement in re-
construction quality may be obtained by using data driven
dictionaries as priors in the reconstruction process. Since
the mixing matrix produced by FSVC is far more ill-
conditioned than that in [12], we need to learn patches that
are larger in both spatial and temporal extent. Motion in-
formation is recorded by consecutive observations; we use
four recorded frames to reconstruct the high speed video.
When the compression rate isc, we learn video patches
that are18 × 18 × 4c pixels. As the compression rate in-
creases, we need to learn patches that are larger both in spa-
tial and temporal extents, so that the spatio-temporal redun-
dancy can be exploited. Unfortunately, learning dictionar-
ies is computationally infeasible as the dimension increases
and so we limit the use of data-driven priors for compres-
sion factors less than8. Using data-driven (DD) priors for
such low compression factors resulted in a significant per-
formance improvement over total variation minimization.
In the future, as algorithms for dictionary learning become



Figure 5.DD Algorithm. A: A simulated video of a moving Lena
image captured by the FSVC with 6x compression; a captured
frame is shown on the right.B: Local velocities are determined
using equation 3. Overall, the error in the measurement space is
smooth and achieves its minimum value at the closest velocity in
the database to the actual motion. The error in one frame for three
highlighted velocities is shown on the right. Error quickly rises for
velocities not nearv∗ yielding errors that are an order of magni-
tude larger.C: Four frames of the recovered high speed video are
shown.

more robust and computationally efficient, we expect that
such data-driven priors will indeed perform better than total
variation.

In implementing data-driven dictionaries, we make two
small adaptations to the traditional dictionary learning and
sparse approximation algorithms. First, we extract the prin-
cipal components for each velocityv, independently. We
achieve this by taking images and translating them by the
appropriate velocityv to create artificial videos which con-
tain scene elements that moving at the desired velocity.
Then we extract patches of size18 × 18 × 28 from these
videos. For each velocityv, we learn the top324 princi-
pal components, and create a principal component matrix,
Pv. In practice we generated a total of521 velocities, sam-
pling heading direction uniformly at 9 degrees and varying
the speed from 0.15 pixels/frame to 1.95 pixels/frame (re-
sulting in blur of up to1.95 ∗ c pixels/captured frame). The
static motion case is also included. Thus, there are a total of
521 principal component matricesPv.

For example, for a given compression rate ofc = 7, we
take18×18×4 patches from the captured FSVC video. For
each such patch we recover a high temporal resolution patch

Figure 6.Reconstruction quality vs compression. Left: As
the compression factor increases, the quality of reconstruction de-
creases. The DD reconstruction curve is limited to 7x. Both algo-
rithms are tested using the same input video of a hairnets adver-
tisement translating to the right; the TV reconstruction uses all 72
frames while the DD reconstruction only uses the first 24 frames
(28 for 7x). Right: Frames from the reconstructed videos using
both DD (top) and TV based (bottom) algorithms.

which is18 × 18 × 28 resulting in a temporal upsampling
of c = 7. For each18× 18× 4 patch from the FSVC video,
we estimate the best local velocityv∗ as

v∗ = argmin
v
||y − SPvαv||

2
2, v = 1, . . . , 521. (3)

In equation (3),y is the vectorized observation patch,S

is the observation matrix defined by the flutter shutter code,
Pv is the principal component basis for thevth velocity, and
αv is the least squares estimates of the coefficients denoted
by αv = (SPv)

†y, where† represents the pseudo-inverse.
Figure 5B shows that the error is much smaller for veloci-
ties near the true patch velocity and quickly rises for other
velocities. Finally, each patch is reconstructed as

x̂ = Pv∗αv∗ . (4)

The recovered high speed video in Figure 5C demonstrates
the high quality reconstruction that can be achieved using
the DD algorithm. After reconstructing each patch in the
observation, overlapping pixels are averaged to generate the
reconstructed high speed video. Recovering a high speed
video with this algorithm is considerably slower than the
TV-based reconstruction, a252 × 252 × 28 video chan-
nel with a compression factor of 7x takes approximately
5 minutes using the same computation setup described in
Section4.2. The more pressing issue, is that such a data-
driven method suffers from two disadvantages especially
when handling large compression factors: (1) learning is
prohibitively slow, and (2) the locally linear motion as-
sumption is violated when the temporal extent of patches
becomes longer. In practice, we notice that this algorithm
results in significant improvement over total variation for
small compression factors.

5. Experiments
We evaluate the performance of FSVC through simula-

tions on videos with frame rates of120−1000 fps. We also



Figure 8.Experimental Results.Observation images with a spatial resolution of234× 306 were captured at 7 frames per second with a
compression factor of 7x.Top: Four frames of a book being pulled to the left are captured by FSVC, ghosting artifacts can be observed
in the outset. The high speed video is reconstructed using the DD algorithm and one frame is shown. The outset shows that the ghosting
has been removed.Bottom: A toy robot is moved to the right along a non-linear path, 12 observations are captured using FSVC. Ghosting
of the fine details on the robot can be seen in the outset. Reconstruction wasdone with the TV algorithm and one frame of the output is
shown. The outset shows that fine details have been preserved.

Figure 7.Reconstruction quality vs. noise. Left:As the standard
deviation of the observation noise increases, the reconstruction
quality of FSVC decays gracefully. Further the coding in FSVC
provides a 4-5 dB performance improvement over short exposure.
Right: The same frame from the high speed video recovered us-
ing both algorithms and when using FSVC; the quality degrades
slowly with the addition of few visible artifacts.

capture data using a Point Grey Dragonfly2 video camera
and reconstruct using both algorithms.

Effect of compression rate: We first test the robustness
of our algorithms through simulation. Simulated observa-
tions are obtained by sampling a high speed ground truth
video using the forward process of equation (2). To test
the robustness of our algorithm at varying compression fac-
tors, we use a video of hairnets advertisement moving from
right to left with a speed of∼ 0.5 pixels per frame (video
credit: Amit Agrawal). The input video has values in the
range[0, 1], the observation noise has a fixed standard de-

viation, σ = 0.025, and the exposure code is held con-
stant. The observed videos have a PSNR of∼ 34 dB. The
effect of increasing the compression on the quality of the
recovered video is highlighted in Figure 4. As the tempo-
ral super-resolution increases, FSVC retains fewer dynamic
weak edges but faithfully recovers large gradients leading
to a graceful degradation of video quality. Notice, in Figure
4, that the hub caps of the wheels of the bike are present
in the reconstructed video even as the compression is in-
creased to a factor of 18. FSVC has a high spatial resolu-
tion that allows slowly moving weak edges to be preserved
in the video reconstruction. Shown in the plot in Figure 6,
is the reconstruction PSNR of both algorithms as a function
of the compression rate. Notice that for low compression
factors, the data-driven algorithm performs better than to-
tal variation, since the locally linear motion assumption is
not violated. As the compression factor increases, the peak
signal-to-noise ratio (PSNR) of the reconstructed video de-
cays gracefully for the TV-based algorithm. The ability to
retain very high quality reconstructions for static/near-static
elements of the scene and the graceful degradation of the
TV algorithm, both of which are apparent from the recon-
structions of the hairnet advertisement video in Figure 6, are
very important attributes of any compressive video camera.

Robustness to observation noise:Figure 7 shows the ef-
fects of varying levels of noise on the fidelity of recon-
struction for both the DD and TV algorithms. The same
hairnets video is used as the ground truth and the standard



deviation of the noise varies from0.025 to 0.125 in incre-
ments of.025. This corresponds to a range of PSNRs from
20.8 − 34.8 dB. The compression factor has been fixed at
7x. In this experiment, we compare the quality of the high
speed video recovered from images captured using FSVC
and a standard video camera using a short exposure. The
short exposure video is created by modifying the temporal
code used inS to have a single1 for the same time instant
t during each exposure. The coded frames and short ex-
posure frames are reconstructed using the DD and TV al-
gorithms. As expected for a low-speed and approximately
linear scene, the DD algorithm reconstruction is of higher
quality than the TV reconstruction. This experiment shows
two observations: (1) degradation of the FSVC reconstruc-
tion is graceful in the presence of noise and (2) FSVC cod-
ing improves the fidelity of reconstruction by approximately
5 dB compared to simple short exposure (at a compression
rate ofc = 7).

Experiments on real data:The FSVC can be implemented
using the built-in functionality of the Point Grey Dragonfly2
video camera.1 The coded exposure pattern is provided us-
ing an external trigger. Due to inherent limitations imposed
by the hardware, images were captured at 7 frames per sec-
ond with a compression factor of 7x. Hence, our goal is to
obtain a working 49 frames per second camera by capturing
7 frames per second coded videos. Figure 8 shows the input
coded images collected by the camera, and frames of the
reconstructed video using the TV and DD algorithms. The
top row of Figure 8 shows one observation frame recorded
with FSVC of a book moving to the left. Ghosting arti-
facts in the observation frame demonstrate that using a tra-
ditional video camera with the same framerate would result
in a blurry video. We recovered a high-speed video using
the DD methods; as expected, the recovered video correctly
interpolated the motion and removes the ghosting artifacts.

A second dataset was captured of a toy robot moving
with non-uniform speed. One captured frame from this
dataset is shown in Figure 8 (bottom-left). The outset shows
an enlarged view of a blurry portion of the observed frame.
Figure 8 (bottom-right) shows one frame from the recon-
structed video and the outset shows the corresponding en-
larged section of the recovered frame. Notice that the blur-
ring is significantly reduced but since the motion of the toy
is quite large, there is still some residual blurring in the re-
constructed video.

6. Discussions and Conclusions
Benefits: Our imaging architecture provides three advan-
tages over conventional imaging. It significantly reduces
the bandwidth requirement at the sensor. It exploits expo-
sure coding which is already a feature of several machine

1Exposure mode 5 is used to control the timing and duration of multiple
exposures within each integration time of the camera.

Figure 9. Comparison of the qualitative properties of compressive
computational video cameras.

Compression P2C2 CPEV FSVC
Vs PSNR (dB) [19] [12] (this paper)

4 41.5 41.8 35.6
8 37.4 38.8 33.1
12 34.2 36.0 29.8
18 31.2 34.5 29.1

Table 1.Comparison of compression vs reconstruction PSNR
in dB for compressive video acquisition architectures in the ab-
sence of observation noise. FSVC is a much simpler hardware
architecture than either P2C2 or CPEV, but it results in reasonable
performance.

vision cameras making it easy to implement. It improves
light throughput of the system compared to acquiring a short
exposure low frame-rate video or [12] and allows acquisi-
tion at low light levels. These are significant advantages
since the prohibitive cost of high-speed imagers is due to
the requirement for high bandwidth and high light sensitiv-
ity. Figure 9 highlights these advantages of our imaging
architecture as well as places it in a larger context of com-
putational cameras developed over the last decade.

Limitations: FSVC exploits the spatio-temporal redun-
dancy in videos during the reconstruction phase of the al-
gorithm. Scenes that do not have spatio-temporal redun-
dancy such as a bursting balloons cannot be handled by the
camera. Since the spatio-temporal redundancy exploited by
traditional compression algorithms and our imaging archi-
tecture are very similar, as a rule of thumb one can assume
that scenes that are compressed efficiently can be captured
well using our method. FSVC uses a coded exposure and
this causes a 33% reduction in light throughput since we
use codes that are open 67% of the time.

Global vs per-pixel shutter: The proposed FSVC comes
as an advancement over two recently proposed computa-
tional cameras [12, 19] that use a per-pixel shutter. The
per-pixel shutter control enables different temporal codes
at different pixels. In contrast, in our design, the controlof
the shutter is global and, hence, all pixels share the same
temporal code. At first glance, this might seem like a small
difference–yet, the implications of this are profound.



A global shutter leads to ill-conditioned measurement
matrix. An easy way to observe this is to study proper-
ties of the adjoint operator of the measurement matrix de-
fined in equation (2). The adjoint of an observed video
is a high-resolution video with zeros for frames at time-
instants when the shutter is closed. The abrupt transition
from the video signal to the nulls introduces high temporal
frequencies. Hence, the adjoint operator is highly coherent
to high frequency patterns and is predisposed to selecting
high-frequency atoms when used with a sparse approxima-
tion algorithm (as in [12]). In contrast, the adjoint operators
associated with both the P2C2 and CPEV [12] are less co-
herent with such bases. Hence, it is much easier to obtain
higher quality reconstructions with these. Shown in Table
1 is a comparison of reconstruction performance using3
different modulation schemes, per-pixel flutter shutter asin
P2C2 [19], per pixel single short exposure as in [12] and
global flutter shutter video camera as proposed in this pa-
per. It is clear that the simple and easy to implement archi-
tecture of FSVC results in reconstruction performance that
is about 6 dB lower per-pixel coding architectures. Further,
these experiments did not include observation noise. Since
CPEV has a very low light throughput (1/compression), the
performance of CPEV will degrade significantly (compared
to P2C2 and FSVC) in the presence of noise especially in
dimly lit scenes.
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