Background and Motivation	Prior Work	Proposed method	Results	Summary

Focal Sweep for Large Aperture Time-of-flight Cameras

September 27, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Background and Motivation	Prior Work O	Proposed method	Results 000	Summary O
Outline				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Background and Motivation

- Continuous-wave ToF imaging
- Defocus blur in ToF cameras

2 Prior Work

3 Proposed method

- Focal sweep technique
- System Overview
- Image capture and deblurring method

Background and Motivation	Prior Work	Proposed method	Results	Summary
●000000	O		000	O
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Background and Motivation

- Continuous-wave ToF imaging
- Defocus blur in ToF cameras

2 Prior Work

3 Proposed method

- Focal sweep technique
- System Overview
- Image capture and deblurring method

 Background and Motivation
 Prior Work
 Proposed method
 Results
 Summary

 0
 0
 0
 0
 0
 0

 Continuous-wave
 ToF imaging

 Working principle

• Captures depth by measuring phase delay of an optical signal:

$$z_p = \frac{c\tau_p}{2} = \frac{c\phi_p}{4\pi f_M}$$

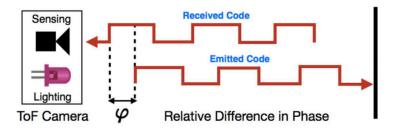


Figure: ToF working principle (Source: A. Kadambi, ICCV 2015 tutorial)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background and Motivation	Prior Work	Proposed method	Results	Summary
00●0000	O		000	O

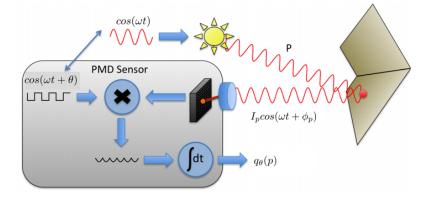


Figure: Continuous-wave ToF sensing (Adapted from Heide et al, 2013)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Background and Motivation	Prior Work	Proposed method	Results	Summary
0000000				

- Emitted signal: $cos(\omega t)$
- Received signal: $a_p cos(\omega t + \phi) + \beta$
- Cross-correlation:

$$q(\theta, p) = \frac{a_p}{2}\cos(\theta + \phi) + \beta$$

- Four such correlation measurements, called quadrature channels, q_i(p); i = {0, 1, 2, 3} captured with four different values of θ = i^π/₂; i = {0, 1, 2, 3}
- Using the quadrature measurements q_i(p), the depth and amplitude can be computed as

$$z_{p} = \tan^{-1} \left(\frac{q_{1}(p) - q_{3}(p)}{q_{0}(p) - q_{2}(p)} \right) \frac{c}{4f\pi}$$
$$a_{p} = \sqrt{(q_{0}(p) - q_{2}(p))^{2} + (q_{1}(p) - q_{3}(p))^{2}}$$
(1)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Background and Motivation	Prior Work O	Proposed method	Results 000	Summary O
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

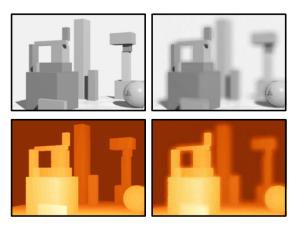
Background and Motivation Continuous-wave ToF imaging Defocus blur in ToF cameras

2 Prior Work

3 Proposed method

- Focal sweep technique
- System Overview
- Image capture and deblurring method

Background and Motivation	Prior Work	Proposed method	Results	Summary
○○○○○●○	O		000	0
Defocus blur in T	oF cameras			


- Poor light throughput
 - Active light source intensity limited safety and power restrictions
 - Exposure duration should be small Motion blur
- Large numerical aperture lenses to capture more light
- Side-effect: Defocus blur and limited depth of field
- Blurry quadrature measurements: $y_i(p) = K(z_p) * q_i(p)$, where $K(z_p)$ is the depth-dependent PSF

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Background and Motivation
 Prior Work
 Proposed method
 Results
 Summary

 0000000
 0
 0
 0
 0
 0

 Defocus blur in ToF cameras
 Illustration
 0
 0
 0

a) Ground truth

b) Conventional ToF

Figure: Illustration of defocus blur in amplitude and depth images captured with ToF camera with f/1.4 lens and sensor pixel size $45 \mu m$

Background and Motivation	Prior Work ●	Proposed method	Results 000	Summary O
Prior work				

- Godbaz et al, 2010
 - Coded aperture for stable deconvolution
 - Gaussian derivative prior for quadrature channels
 - Employ spatially-varying iterative deconvolution technique for deblurring
- Xiao et al., 2015
 - Use image-formation model to address defocus blur
 - Instead of deconvolution, directly estimate latent amplitude and depth from degraded quadrature measurements
 - Three unknowns: depth-dependent PSF, all-in-focus amplitude and all-in-focus depth map
 - ADMM (Alternating Direction Method of Multipliers) used to solve for all-in-focus amplitude and depth map

Background and Motivation	Prior Work	Proposed method	Results	Summary
	O	●0000000	000	O
Outline				

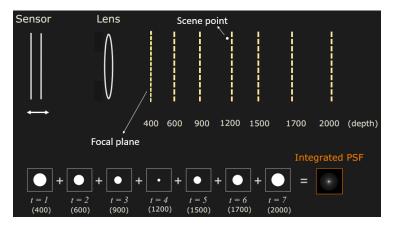
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Background and Motivation

- Continuous-wave ToF imaging
- Defocus blur in ToF cameras

2 Prior Work

3 Proposed method


- Focal sweep technique
- System Overview
- Image capture and deblurring method

Background and Motivation	Prior Work O	Proposed method	Results 000	Summary O
Focal sweep tech	nique			

- Distance between lens and sensor varied at constant rate during exposure
- Resultant blurred image has a depth-independent PSF
- Hence, by estimating a single PSF and using non-blind deconvolution techniques, a sharp all-in-focus image can be obtained

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Background and Motivation	Prior Work	Proposed method	Results	Summary
		0000000		

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure: Illustration of focal sweep technique and how it leads to depth-invariant blur [Source: Nagahara et al., 2010]

Background and Motivation	Prior Work	Proposed method	Results	Summary
	O	○○○●○○○○	000	O
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Background and Motivation

- Continuous-wave ToF imaging
- Defocus blur in ToF cameras

2 Prior Work

3 Proposed method

- Focal sweep technique
- System Overview
- Image capture and deblurring method

Background and Motivation	Prior Work O	Proposed method	Results 000	Summary O
Overview				

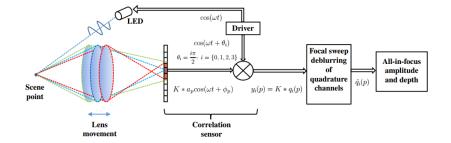


Figure: Overview of the proposed method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Background and Motivation	Prior Work	Proposed method	Results	Summary
	O	○○○○○●○○	000	O
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background and Motivation

- Continuous-wave ToF imaging
- Defocus blur in ToF cameras

2 Prior Work

Proposed method

- Focal sweep technique
- System Overview
- Image capture and deblurring method

Background and Motivation	Prior Work	Proposed method	Results	Summary
		00000000		

- Each quadrature channel is captured by sweeping the focus over the scene depth range
- This results in a depth-invariant blur in the ToF quadrature measurements
- Obtain the two independent channels from the blurry quadrature measurements: $h_{re} = \frac{(y_0 y_2)}{2}$ and $h_{im} = \frac{(y_1 y_3)}{2}$
- *h_{re}* and *h_{im}* are also blurred versions of corresponding sharp channels blurred by the same depth-invariant PSF:

$$h_{re} = K * X_{re}; \ h_{im} = K * X_{im}$$

 $X_{re} = a \cos(\phi); \ X_{im} = a \sin(\phi)$

Background and Motivation	Prior Work	Proposed method	Results	Summary
		0000000		

• Sharp channels $\widehat{X_{re}}$ and $\widehat{X_{im}}$ estimated using non-blind deconvolution with TV regularisation prior:


$$\widehat{X_{re}} = \operatorname{argmin}_{X_{re}} ||h_{re} - K * X_{re}||^2 + \lambda ||X_{re}||_{TV},$$

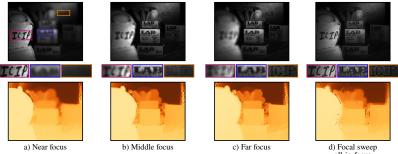
and similarly for $\widehat{X_{im}}$.

• All-in-focus amplitude and depth map obtained from Equation 1 by appropriate substitution of $\widehat{X_{re}}$ for $q_0 - q_2$ and $\widehat{X_{im}}$ for $q_1 - q_3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background and Motivation	Prior Work O	Proposed method	Results ●00	Summary O
Simulated scene				

a) Ground truth


c) Recovered by Xiao et al

d) Focal sweep

e) Proposed method output

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Background and Motivation	Prior Work O	Proposed method	Results 0●0	Summary O
Real scene				

Individual images captured with a standard ToF camera

d) Focal sweep all-in-focus

Background and Motivation	Prior Work	Proposed method	Results	Summary
	O	0000000	00●	O
Post-capture refo	cusing and	tilted DOF		

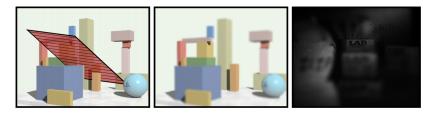


Figure: Left: Ground truth. Middle: Refocused scene along red plane. Right: Refocused real scene

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Background and Motivation	Prior Work O	Proposed method	Results 000	Summary ●
Conclusions and F	uture Work	K		

- Novel methodology for extending DOF in ToF imaging using focal sweep
- Simple recovery algorithm using non-blind deconvolution enabling real-time operation and straightforward scale-up for future generation ToF cameras
- Future work:
 - Better priors than TV norm regularization for ToF quadrature measurements?
 - Novel view synthesis and other applications using ToF focal stack

- ロ ト - 4 回 ト - 4 □