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• Two common methods for cross-modal image acquisition 

 

• Sequential capture 
– Filter wheels, liquid tunable filters 

 

• Precise optical alignment 
– Beam splitting or Filter Array 

Limitations in Cross-modal 

Light 

Yasuma et al. Manakov et al. McGuire et al. 



• Simultaneous capture (dynamic scenes) 

• Each view can be high resolution, different channels 

• Provides angular information 

Solution: Camera arrays 

Pelican Imaging 

Stanford Camera Array 

ProFUSION 



• Aligning images: scene-dependent registration 
 

• Computing stereo correspondence requires redundant 
cameras 

 

• Pelican Imaging – 16 cameras record only 3 unique channels 
 

• There is a need for cross-channel image registration 
– Remove redundancy 

– Shrink array size 

Set back: Parallax 



1. We develop a novel cost metric for cross-channel registration 
 

2. Reduce camera-to-channel ratio of camera arrays without 
sacrificing resolution or light throughput 

 

3. Demonstrate GAC for consumer imaging 
 

4. Enable flexible application-specific imaging applications 
 

5. Capture hyperspectral video with high SNR 

Contributions 



Cross-channel Image Registration 

Reference view Ground truth disparity 

• Simulated cross-channel matching using Middlebury dataset 
‒ Multi-view stereo with 3 viewpoints 



SSD Intra- and Inter-channel Performance 
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Intra-channel: 88% ±1 pixel Inter-channel: 39% ±1 pixel 
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• Pixel intensities differ in each color channel 
– Traditional methods (SAD, SSD, cross-correlation, census) fail 

 

• Edge locations correspond, but gradient magnitudes differ 

 

• Solution: Use normalized gradient magnitudes to find 
correspondence 

 

Improving cross-channel correspondence 



• We employ a window-based cost metric to compute 
correspondence likelihood at each disparity 𝑑 

 

 

 

 

 

 
 

 

• Compute gradients in 𝑢 and 𝑣 directions for each patch 

𝐺𝑢, 𝑝,𝑑 (𝑢, 𝑣, Λ),  𝐺𝑣, 𝑝,𝑑 (𝑢, 𝑣, Λ) 

Correspondence Via Normalized Gradients 

𝑝 

𝐼 𝑝,𝑑 (𝑢, 𝑣, Λ) 

𝑢 
𝑣 Λ 



• Gradients are normalized in each channel independently 
 

𝐺 𝑢, 𝑝,𝑑 𝑢, 𝑣, Λ =
𝐺𝑢, 𝑝,𝑑 𝑢, 𝑣, Λ

𝐺𝑢,{𝑝,𝑑}(⋅,⋅,Λ)

 

 

• 𝑢 and 𝑣 gradients are concatenated to give 𝐺 𝑝,𝑑 (𝑢, 𝑣, Λ) 
 

Edges must be aligned across the 𝑀 color channels, giving our 
cost 𝐶 𝑝, 𝑑 : 
 

𝐶 𝑝, 𝑑 = −    𝐺 𝑝,𝑑 (𝑢, 𝑣, Λ)

𝑀

Λ=1𝑢,𝑣

𝑀

 

Correspondence Via Normalized Gradients 
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Disparity Error (px) 
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Cross-channel Normalized Gradients (CCNG) 
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Cross-channel accuracy 
SSD: 39% ±1 pixel 
CCNG: 79% ±1 pixel 

CCNG Inter-channel 



• CCNG shows a strong preference for the correct 
disparity in textured regions 
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Disparity Error (px) 

Confidence in Disparity Assignment 



• CCNG cost performs well in textured regions 

 

• Textureless regions are ambiguous, require priors to solve 
– Use larger patch sizes in smooth regions 

– Impose a smoothing penalty when computing disparities 

 

• We use bilateral graph cuts to find a disparity map 𝐷: 
 

𝐷(𝑝) =  arg min
𝑑

𝐶 𝑝, 𝑑 + 𝜇𝑆(𝑝, 𝑑) 

Correspondence in Textureless Regions 



Full CCNG Disparity Estimate 

CCNG cross-channel disparity Ground truth disparity 

• 88% Accurate 
‒ The same accuracy as SSD within color channels 
‒ Accuracy improves with more channels 



• AWGN is added to the three input channels, accuracy is the 
average of 10 trials per noise level 
– CCNG cost degrades gracefully with increasing noise 

 

Robustness to noise 

Noise standard deviation (pixels) 
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• Assume camera array is calibrated such that internal and 
external camera parameters are known 

 

• Sweep a virtual plane through the scene to hypothesize 
depths 

 

• Given the hypothesized depths, the algorithm proceeds as 
described 

GAC Correspondence 



APPLICATION I: CONSUMER IMAGING 



• A 2 × 2 array of cameras capture 4 color channels 
– Red, Green, Blue, and Panchromatic (Y). All have IR cut filters 

Input RGBY Images 



• The cameras have a wide baseline (30mm) 

• Direct image fusion is not possible 

Direct Overlap Fails to Recover Color Images 



• Using our CCNG cost we recover a depth map 

• The Y channel is used as reference 

Computing Depth with CCNG 



• R, G, B images are aligned using the depth map 

• Chrominance from the RGB channels is added to the Y image 

RGB Fusion 



Color Image Comparison 

GAC RGB Image Bayer Color Image 

• Quality of GAC image is comparable to a Bayer Sensor 



Color Image Comparison 

GAC RGB Image 

Bayer RGB Image 



• Panchromatic camera in the GAC increases light throughput 
– Higher SNR in low light environments 

GAC for Low-light Imaging 

GAC RGB Image Noisy Bayer Image 



• GAC arrays provide finer angular resolution than single sensor 
cameras 

 

• The depth map computed when using GACs enables post-
capture refocusing 

 

• Users may specify an aperture size and focal plane, affording 
greater artistic freedom 

Post-capture Refocusing 



Post-capture Refocusing 

Near Focus 

In focus 



Post-capture Refocusing 

Mid Focus 

Out of focus 



Post-capture Refocusing 

Far Focus 

Out of focus 



Depth Comparison 

Recovered Scene SAD SSD 

Mutual Information Generalized NCC CCNG (ours) 



Additional GAC Color Images 



Additional GAC Color Images 



• As with other stereo matching algorithms, specular surfaces 
are not faithfully recovered 

GAC—Limitations  

Color image from Bayer sensor Recovered depth map 



• As with other stereo matching algorithms, specular surfaces 
are not faithfully recovered 

GAC—Limitations  

Color image from Bayer sensor GAC color image 



• As with other stereo matching algorithms, specular surfaces 
are not faithfully recovered 

GAC—Limitations  

Color image from Bayer sensor GAC color image 



APPLICATION II: SKIN PERFUSION 
IMAGING 



• Cameras and filters can be easily added or exchanged 

 

• Appropriate tools can be designed for the task at hand 

 

• Information in disparate modalities can be easily integrated 
– E.g. Near infrared, Narrowband, Polarized 

 

• We demonstrate two applications for RGB+NIR imaging 

 

• By simply adding an additional camera to our color imaging 
GAC, we obtain RGB+NIR images 

GAC: Flexible Application Driven Imaging 
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Wavelength (nm)  

Silicon Spectral Sensitivity 

• Camera sensors are sensitive to near infrared light 
NIR 



• Dehazing (Feng et al.) 

 

 

 

 

 

• Shadow Detection (Rüfenacht et al.) 

Near Infrared Imaging Applications 

Input RGB image NIR image Dehazed image 

+ = 

= + 



• IR light penetrates skin to ∼ 100𝜇m 

 

• Bypasses surface blemishes in the face (Süsstrunk et al.) 
– Using a co-axial camera setup 

 

• Improves visibility of subsurface veins (Paquit et al.) 

 

• Same reconstruction as before, but substitute high 
frequencies in NIR for high frequencies in luminance 

 

𝑌fused = 𝑌low freq. + 1 − 𝛼 𝑌high freq. + 𝛼𝑁𝐼𝑅high freq.  

 

Skin Perfusion Imaging 



“Natural” Image Retouching 

• NIR images reduce the appearance of facial blemishes 
– Wrinkles, freckles, light facial hair, etc. 

Color Image NIR Image RGB+NIR 

α=0.75  



• Veins are prominent in NIR, helpful in medical environments 

Enhanced Vein Viewing 

Color 
Image 

NIR 
Image 

RGB + 
NIR 

α=1  



APPLICATION III: HYPERSPECTRAL 
IMAGING FOR DYNAMIC SCENES 



• Serial image acquisition with different bandpass filters 

Hyperspectral Image Acquisition ($$$) 

Earth Observing-1 

Remote sensing 

Liquid crystal tunable filter [Harris and Wallace] 

Tunable filters 

Filter wheels [Brauers et al.] 

External filters 



• Simultaneous image capture—low SNR and low resolution 

Snapshot Hyperspectral ($$$) 

Multi-spectral 
filter array [Shrestha 

et al., Miao et al.] 

Filter Array 

Dispersing prism 
[Du et al.] 
 

Optical Splitting  
Trees [McGuire et al.] 

 

Prism and Beam splitting 

Wide band filters  
[Frese and Gheta],  

 

Planar scenes [Lau and Yang] 

Rigid Camera Arrays 

Kaleidocam filtered aperture  
[Manakov et al.] 

Coded aperture 

Monolithic sensor 
[PIXELTEQ, IMEC] 

Light 



• Bandpass filters restrict light throughput in each channel 
– Resulting images are noisy  

 

• Solution, multiplex light to improve SNR 
 

• Park et al. use a multiplexed illumination scheme 
– Serial, static scenes only 

Improving SNR  



• Multiplexing increases light throughput and gives higher SNR 
 

• Use a GAC with broadband filters with a single light source 
– 5 × 5 ProFUSION color camera array (21 of 25 cameras are used) 

– Commodity Roscolux filters (∼ $1 total cost) 

– 63 spectral measurements per scene point 

Multiplexed Image Capture 

+ = 



• Filters chosen using a greedy algorithm to minimize the 
condition number of the mixing matrix 

Commodity Broadband Filters 
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• Images are aligned using our CCNG algorithm to compute a 
depth map 

• Spectral profiles are recovered without needing to know the 
mixing matrix 

𝐼𝑚 =  𝐹𝑚

𝑆

𝑖=1

𝜆𝑖 𝑅 𝜆𝑖 , 𝑚 = 1,… , 63, 

 

𝐼 = 𝑭𝑅 
 

• 𝐼 (63 × 1) — Image measurements for a given scene point  

• 𝑭 (63 × 𝑆) — Effective filter (broadband * Bayer response) 

• 𝑅 (𝑆 × 1) — Effective reflectance (Illumination * Reflectance) 

Mulitplexing 



• Given a dictionary of 𝑁 known true/multiplexed spectral 
measurements, we demultiplex each scene point: 

 𝑿 (63 × N) — Known multiplexed measurements  

 𝑻 (𝑆 × N) — Known spectral profiles* 
 

• Using 𝑿 as a dictionary we find the K-sparse weights (𝜔) 
which recover the profile of 𝐼: 

 

arg min
𝜔

𝐼 − 𝑿𝜔 , such that 𝜔 0 < K 

 

• The same weights are used to recover 𝑅  
𝑅 = 𝑻𝜔 

Demultiplexing 

* 𝑻 is recorded using a Headwall hyperspectral imager 



• We validate our method on a standard 24 square Color Checker 

– Dictionary learned from 140 square Digital SG Color Checker 

– Average reconstruction SNR: 23.7dB 

Color Checker Profiles 

430 480 530 580 630 680

430 480 530 580 630 680 430 480 530 580 630 680

430 480 530 580 630 680

Reconstructed

Ground Truth

430 480 530 580 630 680



Image Alignment 
Input Images 

Direct overlap 
(averaged) 

Aligned images 
(averaged) 



Depth Comparison 

Recovered Scene SAD SSD 

Mutual Information Generalized NCC CCNG (ours) 



• Average spectral recovery SNR: 26.7dB 

Static Scene Profile 



Hyperspectral Video 



• Recovered spectral profiles of the hands (marked manually) 

Hyperspectral Video 

Average SNR: 27.8dB 
(ground truth taken with arms resting on the table) 



• Currently need hyperspectral calibration 

 

• Illumination dependent calibration 

 

• Can remove HS calibration by assuming a known profile for 
the calibration target 

– Fold illumination into the unknown mixing matrix 𝑭 

– Recover true reflectance of the material 

Limitations  



• Generalized Assorted Cameras are well-suited for a wide 
range of imaging tasks 

 

• Flexible architecture allows for rapid prototyping 

 

• Scalable platform permits any combination of cameras 
– Can increase performance by using additional cameras 

 

• Our cross-channel stereo algorithm accurately estimates 
depth without the need for redundant channels 

Conclusion 


