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Cross-modal Imaging
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Limitations in Cross-modal

* Two common methods for cross-modal image acquisition

* Sequential capture

— Filter wheels, liquid tunable filters

* Precise optical alignment

— Beam splitting or Filter Array
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Solution: Camera arrays

e Simultaneous capture (dynamic scenes)
e Each view can be high resolution, different channels
* Provides angular information
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Set back: Parallax

* Aligning images: scene-dependent registration

 Computing stereo correspondence requires redundant
cameras

e Pelican Imaging — 16 cameras record only 3 unique channels

e There is a need for cross-channel image registration
— Remove redundancy

— Shrink array size



Contributions

1. We develop a novel cost metric for cross-channel registration

2. Reduce camera-to-channel ratio of camera arrays without
sacrificing resolution or light throughput

3. Demonstrate GAC for consumer imaging
4. Enable flexible application-specific imaging applications

5. Capture hyperspectral video with high SNR
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Cross-channel Image Registration

* Simulated cross-channel matching using Middlebury dataset
— Multi-view stereo with 3 viewpoints

brand
4 - Satety Matches

Reference view Ground truth disparity



SSD Intra- and Inter-channel Performance

Intra-channel: 88% =1 pixel Inter-channel: 39% +1 pixel



Edge alignment across color channels
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Improving cross-channel correspondence

* Pixel intensities differ in each color channel
— Traditional methods (SAD, SSD, cross-correlation, census) fail

* Edge locations correspond, but gradient magnitudes differ

e Solution: Use normalized gradient magnitudes to find
correspondence
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Correspondence Via Normalized Gradients

 We employ a window-based cost metric to compute
correspondence likelihood at each disparity d

A
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I{p,d} (u, D, A)

 Compute gradients in u and v directions for each patch
Gu,{p,d} (u, D, A) , Gv,{p,d} (u, D, A)
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Correspondence Via Normalized Gradients

* Gradients are normalized in each channel independently

Gu,{p,d} (u, v, A)
|G a3l

éu,{p,d} (w,v,A) =

 u and v gradients are concatenated to give @{p,d}(u, v, \)

Edges must be aligned across the M color channels, giving our
cost C(p, d):

M
M
C(p,d) =— Z 1_[ Gipay(u, v, A)
u,v A=1




Cross-channel Normalized Gradients (CCNG)

CCNG Inter-channel
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Cross-channel accuracy

SSD: 39% =+1 pixel
CCNG: 79% +1 pixel



Confidence in Disparity Assignment

* CCNG shows a strong preference for the correct
disparity in textured regions

Cost
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Correspondence in Textureless Regions

* CCNG cost performs well in textured regions

e Textureless regions are ambiguous, require priors to solve
— Use larger patch sizes in smooth regions
— Impose a smoothing penalty when computing disparities

* We use bilateral graph cuts to find a disparity map D:

D(p) = argminC(p,d) + uS(p, d)
d
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Full CCNG Disparity Estimate

e 88% Accurate

— The same accuracy as SSD within color channels
— Accuracy improves with more channels

CCNG cross-channel disparity Ground truth disparity
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Robustness to noise

* AWGN is added to the three input channels, accuracy is the

average of 10 trials per noise level
— CCNG cost degrades gracefully with increasing noise

Color (RGB) Hyperspectral
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GAC Correspondence

 Assume camera array is calibrated such that internal and
external camera parameters are known

* Sweep a virtual plane through the scene to hypothesize
depths

* Given the hypothesized depths, the algorithm proceeds as
described
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APPLICATION I: CONSUMER IMAGING



Input RGBY Images

e A2 X 2 array of cameras capture 4 color channels
— Red, Green, Blue, and Panchromatic (Y). All have IR cut filters




Direct Overlap Fails to Recover Color Images

 The cameras have a wide baseline (30mm)

* Directimage fu5|on is not p055|ble
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Computing Depth with CCNG

e Using our CCNG cost we recover a depth map

* The Y channel is used as reference




RGB Fusion

R, G, B images are aligned using the depth map

 Chrominance from the RGB channels is added to the Y image
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Color Image Comparison

Quality of GAC image is comparable to a Bayer Sensor

GAC RGB Image Bayer Color Image




Color Image Comparison

GAC RGB Image




GAC for Low-light Imaging

* Panchromatic camera in the GAC increases light throughput
— Higher SNR in low light environments

WEMBLEY 2013




Post-capture Refocusing

 GAC arrays provide finer angular resolution than single sensor
cameras

 The depth map computed when using GACs enables post-
capture refocusing

* Users may specify an aperture size and focal plane, affording
greater artistic freedom
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Post-capture Refocusing
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In focus

ﬁ x Near Focus
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Post -captu re Refocusmg
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Out of focus
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Post -capture Refocusmg

Out of focus

Far Focus




Depth Comparison
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Additional GAC Color Images




GAC—Limitations

* As with other stereo matching algorithms, specular surfaces
are not faithfully recovered

Color image from Bayer sensor Recovered depth map
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GAC—Limitations

* As with other stereo matching algorithms, specular surfaces
are not faithfully recovered

Color image from Bayer sensor GAC color image
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As with other stereo matching algorithms, specular surfaces
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APPLICATION IlI: SKIN PERFUSION
IMAGING



GAC: Flexible Application Driven Imaging

e Cameras and filters can be easily added or exchanged
* Appropriate tools can be designed for the task at hand

* Information in disparate modalities can be easily integrated

— E.g. Near infrared, Narrowband, Polarized
 We demonstrate two applications for RGB+NIR imaging

* By simply adding an additional camera to our color imaging
GAC, we obtain RGB+NIR images

e
eé
f



Silicon Spectral Sensitivity

 Camera sensors are sensitive to near infrared light
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Near Infrared Imaging Applications

* Dehazing (Feng et al.)

Input RGB image NIR image Dehazed image




Skin Perfusion Imaging
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IR light penetrates skin to ~ 100um

Bypasses surface blemishes in the face (Stsstrunk et al.)

— Using a co-axial camera setup
Improves visibility of subsurface veins (Paquit et al.)

Same reconstruction as before, but substitute high
frequencies in NIR for high frequencies in luminance

qused — Ylow freq. + ((1 — a)Yhigh freq. + aNIRhigh freq.)
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“Natural” Image Retouching

* NIR images reduce the appearance of facial blemishes
— Wrinkles, freckles, light facial hair, etc.

a=0.75

NIR Image RGB+NIR



Enhanced Vein Viewing

* \Veins are prominent in NIR, helpful in medical environments




APPLICATION llI: HYPERSPECTRAL
IMAGING FOR DYNAMIC SCENES



Hyperspectral Image Acquisition (SSS)

* Serial image acquisition with different bandpass filters

[ External filters } [ Remote sensing }

Filter wheels [Brauers et al.] Earth Observing-1

P

[ Tunable filters }

Liquid crystal tunable filter [Harris and Wallace]




Snapshot Hyperspectral (SSS)

* Simultaneous image capture—low SNR and low resolution

{ Prism and Beam splitting J [ Filter Array }

Dispersing prism

Multi-spectral o¢ 00 ®
[Du et al.] > % % %

-
C] filter array [Shrestha o o¢ oo

et al., Miao et al.]

Optical Splitting . Light 00 %0 o0
Trees [McGuire et al.] \§§’§§/ Monolithic sensor

AN [PIXELTEQ, IMEC]
[ Rigid Camera Arrays } [ Coded aperture }

Wide band filters
[Frese and Gheta],

Kaleidocam filtered aperture
[Manakov et al.]

Planar scenes [Lau and Yang]
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Improving SNR

* Bandpass filters restrict light throughput in each channel

— Resulting images are noisy

* Solution, multiplex light to improve SNR

* Park et al. use a multiplexed illumination scheme

— Serial, static scenes only og LED Panel
. . % o Scene
Illummatlon Sequence
Controllk\
Sync Signal -4 S(M

C (k)

m

Camera
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Multiplexed Image Capture

* Multiplexing increases light throughput and gives higher SNR

* Use a GAC with broadband filters with a single light source
— 5 X 5 ProFUSION color camera array (21 of 25 cameras are used)
— Commodity Roscolux filters (~ $1 total cost)
— 63 spectral measurements per scene point

\




Commodity Broadband Filters

* Filters chosen using a greedy algorithm to minimize the
condition number of the mixing matrix
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Mulitplexing

Images are aligned using our CCNG algorithm to compute a
depth map

Spectral profiles are recovered without needing to know the
mixing matrix

Fm (AL)R(AL), m=1,..,63,

[m
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I = FR

I (63 X 1) — Image measurements for a given scene point
F (63 X §) — Effective filter (broadband * Bayer response)
R (S X 1) — Effective reflectance (lllumination * Reflectance)



Demultiplexing

e Given a dictionary of N known true/multiplexed spectral
measurements, we demultiplex each scene point:

X (63 X N) — Known multiplexed measurements
T (S X N) — Known spectral profiles*

* Using X as a dictionary we find the K-sparse weights (w)
which recover the profile of I:

arg min||I — Xw||, such that ||w||; < K

w

 The same weights are used to recover R
R=Tw

* T is recorded using a Headwall hyperspectral imager
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Color Checker Profiles

* We validate our method on a standard 24 square Color Checker
— Dictionary learned from 140 square Digital SG Color Checker
— Average reconstruction SNR: 23.7dB

—Ground Truth

430480530580 630680 430 480 530 580 630 680 430 480 530580630 680
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Reconstructed
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Image Alignment Direct overlap

Input Images (averaged)

Aligned images

(averaged)
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Depth Comparison
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Static Scene Profile

* Average spectral recovery SNR: 26.7dB

== Reconstructed = = Ground Truth
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Hyperspectral Video




Hyperspectral Video

Recovered spectral profiles of the hands (marked manually)

Frame 1

Frame 10

Frame 25
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— Light Skin

= = Dark Skin
Frame 35
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Frame 39
Average SNR: 27.8dB
(ground truth taken with arms resting on the table)



Limitations

* Currently need hyperspectral calibration
* lllumination dependent calibration

* Can remove HS calibration by assuming a known profile for
the calibration target
— Fold illumination into the unknown mixing matrix F
— Recover true reflectance of the material
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Conclusion
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Generalized Assorted Cameras are well-suited for a wide
range of imaging tasks

Flexible architecture allows for rapid prototyping

Scalable platform permits any combination of cameras

— Canincrease performance by using additional cameras

Our cross-channel stereo algorithm accurately estimates
depth without the need for redundant channels



