Generalized Assorted Camera Arrays: Robust Cross-channel Registration and Applications

Jason Holloway, Kaushik Mitra, Sanjeev Koppal, Ashok Veeraraghavan

Cross-modal Imaging

Hyperspectral

Cross-modal Imag

Hyperspectral

HDR

Cross-modal Imag

Light Fields HDR

Limitations in Cross-modal

- Two common methods for cross-modal image acquisition
- Sequential capture
 - Filter wheels, liquid tunable filters
- Precise optical alignment
 - Beam splitting or Filter Array

Yasuma et al.

Manakov et al.

McGuire et al.

Solution: Camera arrays

- Simultaneous capture (dynamic scenes)
- Each view can be high resolution, different channels
- Provides angular information

Pelican Imaging

Stanford Camera Array

ProFUSION

Set back: Parallax

- Aligning images: scene-dependent registration
- Computing stereo correspondence requires redundant cameras
- Pelican Imaging 16 cameras record only 3 unique channels
- There is a need for <u>cross-channel image registration</u>
 - Remove redundancy
 - Shrink array size

Contributions

- 1. We develop a novel cost metric for cross-channel registration
- 2. Reduce camera-to-channel ratio of camera arrays without sacrificing resolution or light throughput
- 3. Demonstrate GAC for consumer imaging
- 4. Enable flexible application-specific imaging applications
- 5. Capture hyperspectral video with high SNR

Cross-channel Image Registration

- Simulated cross-channel matching using Middlebury dataset
 - Multi-view stereo with 3 viewpoints

Reference view

Ground truth disparity

SSD Intra- and Inter-channel Performance

Intra-channel: $88\% \pm 1$ pixel

Inter-channel: $39\% \pm 1$ pixel

Edge alignment across color channels

Improving cross-channel correspondence

- Pixel intensities differ in each color channel
 - Traditional methods (SAD, SSD, cross-correlation, census) fail
- Edge locations correspond, but gradient magnitudes differ
- Solution: Use normalized gradient magnitudes to find correspondence

Correspondence Via Normalized Gradients

• We employ a window-based cost metric to compute correspondence likelihood at each disparity d

• Compute gradients in u and v directions for each patch $G_{u,\{p,d\}}(u,v,\Lambda), G_{v,\{p,d\}}(u,v,\Lambda)$

Correspondence Via Normalized Gradients

• Gradients are normalized in each channel independently

$$\widehat{G}_{u,\{p,d\}}(u,\nu,\Lambda) = \frac{G_{u,\{p,d\}}(u,\nu,\Lambda)}{\|G_{u,\{p,d\}(\cdot,\cdot,\Lambda)}\|}$$

• u and v gradients are concatenated to give $\hat{G}_{\{p,d\}}(u, v, \Lambda)$

Edges must be aligned across the M color channels, giving our cost C(p, d):

$$C(p,d) = -\sqrt[M]{\sum_{u,v} \prod_{\Lambda=1}^{M} \widehat{G}_{\{p,d\}}(u,v,\Lambda)}$$

Cross-channel Normalized Gradients (CCNG)

CCNG Inter-channel

<u>Cross-channel accuracy</u> SSD: $39\% \pm 1$ pixel CCNG: $79\% \pm 1$ pixel

Confidence in Disparity Assignment

 CCNG shows a strong preference for the correct disparity in textured regions

Correspondence in Textureless Regions

- CCNG cost performs well in textured regions
- Textureless regions are ambiguous, require priors to solve
 - Use larger patch sizes in smooth regions
 - Impose a smoothing penalty when computing disparities
- We use bilateral graph cuts to find a disparity map *D*:

$$D(p) = \arg\min_{d} C(p,d) + \mu S(p,d)$$

Full CCNG Disparity Estimate

- 88% Accurate
 - The same accuracy as SSD *within* color channels
 - Accuracy improves with more channels

CCNG cross-channel disparity

Ground truth disparity

Robustness to noise

- AWGN is added to the three input channels, accuracy is the average of 10 trials per noise level
 - CCNG cost degrades gracefully with increasing noise

GAC Correspondence

- Assume camera array is calibrated such that internal and external camera parameters are known
- Sweep a virtual plane through the scene to hypothesize depths
- Given the hypothesized depths, the algorithm proceeds as described

APPLICATION I: CONSUMER IMAGING

Input RGBY Images

- A 2×2 array of cameras capture 4 color channels
 - Red, Green, Blue, and Panchromatic (Y). All have IR cut filters

Direct Overlap Fails to Recover Color Images

- The cameras have a wide baseline (30mm)
- Direct image fusion is not possible

Computing Depth with CCNG

- Using our CCNG cost we recover a depth map
- The Y channel is used as reference

RGB Fusion

- R, G, B images are aligned using the depth map
- Chrominance from the RGB channels is added to the Y image

Color Image Comparison

• Quality of GAC image is comparable to a Bayer Sensor

GAC RGB Image

Bayer Color Image

Color Image Comparison

Bayer RGB Image

GAC for Low-light Imaging

- Panchromatic camera in the GAC increases light throughput
 - Higher SNR in low light environments

GAC RGB Image

Noisy Bayer Image

- GAC arrays provide finer angular resolution than single sensor cameras
- The depth map computed when using GACs enables postcapture refocusing
- Users may specify an aperture size and focal plane, affording greater artistic freedom

Near Focus

Mid Focus

Far Focus

Depth Comparison

Additional GAC Color Images

Additional GAC Color Images

GAC—Limitations

• As with other stereo matching algorithms, specular surfaces are not faithfully recovered

Color image from Bayer sensor

Recovered depth map

GAC—Limitations

• As with other stereo matching algorithms, specular surfaces are not faithfully recovered

Color image from Bayer sensor

GAC color image

GAC—Limitations

• As with other stereo matching algorithms, specular surfaces

APPLICATION II: SKIN PERFUSION IMAGING

GAC: Flexible Application Driven Imaging

- Cameras and filters can be easily added or exchanged
- Appropriate tools can be designed for the task at hand
- Information in disparate modalities can be easily integrated
 E.g. Near infrared, Narrowband, Polarized
- We demonstrate two applications for RGB+NIR imaging
- By simply adding an additional camera to our color imaging GAC, we obtain RGB+NIR images

Silicon Spectral Sensitivity

• Camera sensors are sensitive to near infrared light

Near Infrared Imaging Applications

• Dehazing (Feng et al.)

Input RGB image

NIR image

Dehazed image

• Shadow Detection (Rüfenacht et al.)

Skin Perfusion Imaging

- IR light penetrates skin to $\sim 100 \mu m$
- Bypasses surface blemishes in the face (Süsstrunk et al.)
 Using a co-axial camera setup
- Improves visibility of subsurface veins (Paquit et al.)
- Same reconstruction as before, but substitute high frequencies in NIR for high frequencies in luminance

$$Y_{\text{fused}} = Y_{\text{low freq.}} + \left((1 - \alpha) Y_{\text{high freq.}} + \alpha N I R_{\text{high freq.}} \right)$$

"Natural" Image Retouching

- NIR images reduce the appearance of facial blemishes
 - Wrinkles, freckles, light facial hair, etc.

Color Image

NIR Image

RGB+NIR

α=0.75

Enhanced Vein Viewing

• Veins are prominent in NIR, helpful in medical environments

APPLICATION III: HYPERSPECTRAL IMAGING FOR DYNAMIC SCENES

Hyperspectral Image Acquisition (\$\$\$)

• Serial image acquisition with different bandpass filters

External filters

Filter wheels [Brauers et al.]

Remote sensing

Earth Observing-1

Tunable filters

Liquid crystal tunable filter [Harris and Wallace]

Snapshot Hyperspectral (\$\$\$)

Simultaneous image capture—low SNR and low resolution ullet

Prism and Beam splitting Dispersing prism [Du et al.] ⊞ **Optical Splitting**

Trees [McGuire et al.]

Rigid Camera Arrays

Wide band filters [Frese and Gheta],

Filter Array

Multi-spectral filter array [Shrestha et al., Miao et al.]

Monolithic sensor [PIXELTEQ, IMEC]

Coded aperture

Kaleidocam filtered aperture [Manakov et al.]

Improving SNR

- Bandpass filters restrict light throughput in each channel
 - Resulting images are noisy
- Solution, multiplex light to improve SNR
- Park et al. use a multiplexed illumination scheme
 - Serial, static scenes only

Multiplexed Image Capture

- Multiplexing increases light throughput and gives higher SNR
- Use a GAC with broadband filters with a single light source
 - -5×5 ProFUSION color camera array (21 of 25 cameras are used)
 - Commodity Roscolux filters (\sim \$1 total cost)
 - 63 spectral measurements per scene point

Commodity Broadband Filters

• Filters chosen using a greedy algorithm to minimize the condition number of the mixing matrix

Mulitplexing

- Images are aligned using our CCNG algorithm to compute a depth map
- Spectral profiles are recovered *without* needing to know the mixing matrix

$$I_m = \sum_{i=1}^{S} F_m(\lambda_i) R(\lambda_i), \qquad m = 1, \dots, 63,$$
$$I = \mathbf{F}R$$

- $I(63 \times 1)$ Image measurements for a given scene point
- $F(63 \times S)$ Effective filter (broadband * Bayer response)
- $R(S \times 1)$ Effective reflectance (Illumination * Reflectance)

Demultiplexing

• Given a dictionary of *N* known true/multiplexed spectral measurements, we demultiplex each scene point:

 $X (63 \times N)$ — Known multiplexed measurements $T (S \times N)$ — Known spectral profiles*

Using X as a dictionary we find the K-sparse weights (ω) which recover the profile of I:

$$\underset{\omega}{\arg\min} \|I - X\omega\|$$
 , such that $\|\omega\|_0 < K$

• The same weights are used to recover \hat{R} $\hat{R} = \mathbf{T}\omega$

* T is recorded using a Headwall hyperspectral imager

Color Checker Profiles

- We validate our method on a standard 24 square Color Checker
 Dictionary learned from 140 square Digital SG Color Checker
 - Average reconstruction SNR: 23.7dB

Depth Comparison

Recovered Scene

Mutual Information

SAD

Generalized NCC

SSD

Static Scene Profile

• Average spectral recovery SNR: 26.7dB

Hyperspectral Video

Hyperspectral Video

• Recovered spectral profiles of the hands (marked manually)

Limitations

- Currently need hyperspectral calibration
- Illumination dependent calibration
- Can remove HS calibration by assuming a known profile for the calibration target
 - Fold illumination into the unknown mixing matrix F
 - Recover true reflectance of the material

Conclusion

- Generalized Assorted Cameras are well-suited for a wide range of imaging tasks
- Flexible architecture allows for rapid prototyping
- Scalable platform permits any combination of cameras
 Can increase performance by using additional cameras
- Our cross-channel stereo algorithm accurately estimates depth *without* the need for redundant channels

