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Abstract—One popular technique for multi-modal imaging is

in loss of spatial resolution and often produces low-resolution

Generalized Assorted Pixels (GAP), where an assorted pixel hyperspectral images (e.@56 256 resolution in IMEC).

array on the image sensor allows for multi-modal capture.
Unfortunately GAP is limited in its applicability because of
the need for multi-modal lters that are amenable with semi-
conductor fabrication processes and results in a xed multi-modal
imaging con guration. In this paper, we advocate for Generalized
Assorted Camera (GAC) arrays for multi-modal imaging—i.e.,
a camera array with Iters of different characteristics placed
in front of each camera aperture. GAC provides us with three
distinct advantages over GAP: ease of implementation, exible
application dependent imaging since lters are external and can
be changed and depth information that can be used for enabling
novel applications (e.g. post-capture refocusing). The primary
challenge in GAC arrays is that since the different modalities are
obtained from different viewpoints, there is a need for accurate
and ef cient cross-channel registration. Traditional approaches
such as SSD, SAD, and mutual information all result in multi-
modal registration errors. Here, we propose a robust cross-
channel matching cost function, based on aligning normalized
gradients, that allows us to compute cross-channel sub-pixel
correspondences for scenes exhibiting non-trivial geometry. We
highlight the promise of GAC arrays with our cross-channel
normalized gradient cost for several applications such as low
light imaging, post-capture refocusing, skin perfusion imaging
using RGB+NIR and hyperspectral imaging.

I. INTRODUCTION

Traditional methods for multi-modal acquisition—such as
using hyperspectral imagers—trade-off temporal resolution érljl
order to improve spectral resolution by the use of either

a spectrally-tunable Iter [1] or by using line-scan camer

The GAP strategy is to place lters on a single sensor.
Generalized camera arrays, where multi-modal Iters are at-
tached to the aperture of multiple cameras, are an alternative
solution. We advocate Generalized Assorted Camera (GAC)
arrays, which mitigate the fabrication, cost and resolution
challenges faced by GAP and enable high resolution, exible
(application-dependent), multi-modal imaging without making
restrictive assumptions about scene geometry.

In this paper we make two important advances, we improve
cross channel registration and highlight several applications of
GAC arrays.

Cross-channel Registration:;Traditional multi-view stereo
methods assume brightness constancy across the images from
each camera in the array, which is violated when the views
observe different modalities. One solution is to repeat cameras
for each modality which increases the number of cameras in
the array. For example, Pelican Imaging [7], uses an array with
16 cameras to obtait8 channels. Instead of this inef cient
use of cameras, we propose a cross-channel multi-modal
registration cost function that is based on aligning normalized
gradients. This allows us to make ef cient use of the cameras
in our array enabling us to capture similar delity registration
across channels with far fewer cameras.

Applications: We highlight the promise of GAC arrays
several applications such as (a) low light imaging, (b)
ost-capture refocusing, (c) skin perfusion imaging using

and a method for spatial scan of the scene [2]. While theseGB+N|R’ and (d) hyperspectral imaging.

methods are popular techniques for hyperspectral acquisition,
they are often limited to static scenes and result in objectioA: Motivating Applications

able motion-related artifacts in dynamic scenes. Generalizedqgmera Arrays for Smartphones: Manufacturers of

Assorted Pixels (GAP) is slowly gaining popularity as @martphone cameras have begun using camera arrays to reduce
method for acquiring spectral [3], [4], [5], polarization [3],the thickness of the camera module [7], [13]. By distributing
[4], and angular information [6] on a single image SensOfhannel measurements to separate sensors, the GAC array
Unfortunately, several challenges to its widespread adoptigfiminates demosaicing artifacts, and the additional viewpoints
remain: Fabrication-GAP requires nano-scale manufacturiggapie post-capture digital refocusing (similar to the capabili-
techniques that can produce lters in a manner that is COMpgkss of the Lytro camera [14], [15]). Unlike the work presented
ible with semiconductor fabrication processes, Cost—curren”y [7], where more than one array element measures the
available GAP sensors such as those offered by PixelTeq &le channel, we demonstrate RGB fusion where each camera
IMEC are expensive, and Resolution-the use of GAP resg.ords a unique channel, signi cantly reducing the number of
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TABLE |
COMPARISON OF SPECTRAL ACQUISITION METHODS WITHIN THE VISIBE SPECTRUM

Camera Arrays

Time seq. Time Seq. Snapshot Co-location Repeated Planar
Prog Iter scanline (GAP) [9], [10] cameras* assumption Ours (GAC)
(8] [2] (3], [4], [5] [7] [11], [12]
Cost $$ $$ $$$ $$ $ $ $
Handles Motion No No Yes Yes Yes Yes Yes
Spatial Resolution Low High Low th\a’ [[fg)] Low High High
Complex Geometry Yes Yes Yes Yes Yes No Yes
. - 1=7[3], 1=8 4], 1=9[9], _ 5=5 [11], -
# Cams / # Spectra  1=33 1=175 1=45 [5] 8=8 [10] 16=3 12=12 [12] 21=28
Light Throughput Low Low Low Low High* Low High
*Repeated cameras is implemented only for RGB fusion
material classi cation [17], [18], viewing veins [19], moni- Il. RELATED WORK

toring the ripeness of fruit [20], shadow detection [21], and RGB Fusion: Conventional color cameras use a color lter

natural image retouching [22] only require information from) . -
a few specic channels to achieve the desired outcome. V%ray (CFA) followed by demosaicing to sample the visible

demonstrate an implementation of a GAC array to natural pectrum of light. While the Bayer pattern [29] is the most

. L S mmon CFA, other patterns have been proposed to improve
retouch portraits and to enhance the visibility of veins in armg. o rendered image qualit [30], [31]. These approaches sac-
Hyperspectral Imaging: Hyperspectral (HS) cameras pro- ge g y ' ) bp

. . . ri ial resolution in favor of higher ral sampling.
vide spectral signatures that can be used for object classi ce spat_a €so u_to In-tavor ot higher spect a sampiing
To avoid reduction in spatial resolution, multiple sensors

cation [23], retinal imaging [24], [25], environmental imag- .
ing [26], and surveillance [27]. Current HS cameras ha may be used to capture color channels independently. Foveon

e . : 52] created a camera which optically separates color channels
limited spatio-temporal resolution and must record numerotjs

measurements of the scene in a serial manner. While thi ,rough dispersing prisms onto three separate sensors. PiCam

acceptable for static scenes, such HS systems cannot be sié‘l ses a camera array and duplicates each color channel

to capture dynamic scenes. GAC arrays have been propoa%Gallow intra-modality depth reconstruction. Our approach

to circumvent these limitations and record video with hig Ges not require complicated and thick optics or repetitious
) : ampling of the same modality.

spatial, temporal, and spectral resolution [10], [11], [12f Y tral | ina: A h for h

[28]. Previous solutions involving GAC arrays suffer from ytpelrs_pec fa n}ag;n?. comm(_)ntappro?c or hyper- tial

poor signal-to-noise ratios and require either simple scengectra flr_naglng ot static scer;)es (;S Ito cag urf' a sequetn Ila

geometries [11], [12], complicated optics to co-locate imagégr'es of images using narrowband Ters [4]. yperspectra

[10], or in exible design parameters [28]. Table | compare¥'de0 can be realized by adding elements along the optical path

o - ; . h as a dynamic mirror [33], Lyot Iter [34], aperture lters
the qualities of existing hyperspectral imaging systems. c : . . ;
propose a solution using a GAC array with inexpensi 5], novel mirror based hardware [9], diffraction grating [36],

commodity broadband Iters placed before each camera. TRE 2 dl_sper_smg prism [37]’_ [38], [39), to create smalle_r, IOW’
resolution images on a single sensor. The spectral imaging

nal hyperspectral image is recovered by demultiplexing the .
ypersp 9 y P 9 system by Wagadarikar et al. [40] uses a coded aperture to
captured data. o
make sparse measurements of a scene which is then recovered
B. Contributions using compressive sensing techniques; cumbersome optics
limits the exibility of the system. Efforts to extend CFAs

Speci cally, we present the following contributions: . ) .
. . : to enable hyperspectral imaging have led to reduced spatial
Design and test a novel normalized gradient cost metr

) H%solution and demosaicing artifacts [3], [4], [5].
to compute point correspondences across color channels, .
Reduce the camera-to-channel ratio of GAC arrays by YPerspectral GAC arrays, such as our design, can produce

removing repetitive channel measurements without sacfill resolution images but require image registration. Previous
cing spatial resolution or light throughput. work has performed this registration assuming distant or planar

Use our cross-channel registration technique to show tif@enes [12] or by using hand marked key points [11]. An
GAC arrays can be used for RGB fusion, post-captugiternate approach is to directly apply regular stereo metrics on
refocusing and low light imaging. Iters with adjacent center wavelengths [28] and apply depth
Incorporate side-band near-infrared information to pefusion for the nal scene structure, but this imposes limits on
form application-speci c tasks such as image retouchirgrray con guration and composition.

and enhancing the visibility of veins. Multiplexing hyperspectral illumination is yet another ap-
Demonstrate that GAC arrays can be used for capturipgbach which has proven successful [41], [42]. To achieve
hyperspectral video. Each camera captures multiplexgjh quality reconstruction these methods temporally multi-
broadband spectral measurements, which increases pfi& many illumination sources, each with a different spectral
light throughput. pro le. Therefore, this approach suffers from motion artifacts
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when imaging dynamic scenes. Our work achieves passive™s
high quality reconstructions for dynamic scenes and does ng =
requirea priori knowledge of the illumination spectrum.

Image Alignment: Fusing views from a camera array is [§%
dif cult because each image is taken from a different vantage
point, which introduces depth-dependent disparity. Traditional|4
methods for aligning two images using stereo matching on
recti ed image pairs are quite mature (see [43] for a review of it NS
relevant algorithms). Robust multi-view stereo algorithms (see (@) Reference view (b) True d'SPa”ty
[44] for a survey of the literature) can be used to reconstruct o
3-D model of the scene for arrays of many cameras provide
that each camera is operating in the same modality.

Image registration across modalities (e.g. cameras recordin
different spectral bands) is still dif cult, due to the lack of
shared information between views. Irani and Anandan [45]
reduce registration complexity by assuming planar scenes an
fuse images by matching edges within a global framework
Peng et al. [46] align linearly correlated images by minimizing (c) SSD same channel disparity (d) SSD cross-channel disparity
the rank of the aligned image stack. Bando et al. [47] useg gg Seo
a generalized normalized cross-correlation metric to registerg 4q 2 40

;‘» 2
L

images captured in the red, green, and blue channels typical OE 20
color imaging. The use of mutual information as a reglstratlon 5

0
metric was proposed by Woods et al. [48] and re ned by Hill = 10 5 0 5 10 10 5 0 5 10
et al. [49] to align MRI and PET images, but the results suffer Assignment Error (pixels) Assignment Error (pixels)
in the presence of image noise. (e) SSD same channel error (f) SSD cross-channel error

Gradient information has been successfully incorporated dfy. 1. Failure of standard stereo algorithms to match across channels:
traditional stereo-matching algorithms [50], [51], [52], [53]The sum-of-squared differences cost is used to nd correspondence for (a) a

particularly to increase robustness to radiometric variatigfien® from [60] with (b) known disparity. Matching is performed using (c)
he luminance and (d) different color channels at each viewpoint. Accuracy is

[54], [55]. A cross-channel stereo matching algorithm wagmputed using the top0% of pixels sorted by gradient magnitude. As seen

proposed by Pinggera et al. [56] which matches dense his{e) SSD matching performs well within the same channel V&#8%

togram of gradlent (HOG) deSCFIptOFS between i images taken f correspondences accurate to witHinpixel of the correct disparity; (f)
erformance across color channels suffers with an accuracy of3@nlyeo.

different spectral bands. In simulated results, matching usmg

HOG descriptors performed well, but tests on real images lead

to coarse and inaccurate depth maps. Using normalized gfBannel (red, green, and blue from the rst, second, and third
dients to compute global registration for medical images wggews respectively) the computed disparity map (Fig. 1(d)) is
proposed by Haber and Modersitzki [57] and extend&tdk of signi cantly lower quality. Not only is the disparity map
et al. [58] and by Hodneland et al. [59] among others. Theggong, the distribution of error for textured regions is much
works are intended to align medical images (e.g. MRI, PEWider than when matching within a channel. Or#9:1% of

and CT scans) in a global framework with local deformatiopixels are within1 pixel of the correct disparity while over

model. Such an approach is unable to align images with depi%% are more tharé pixels away from the correct disparity.
based disparities where depth discontinuities are common.

We propose an image alignment algorithm which extends .
normalized gradients to align cross-channel perspective imagesCOIor Channel Gradients
in the gradient domain, which we now explain in detail. While pixel intensities may vary between color channels,
the location of edges are aligned as shown in Fig. 2. Thus,
matching edges across color channels should yield a higher
delity disparity map than matching pixel intensities.
Computing the sum-of-squared differences (SSD) over aGiven a hypothesized disparitg, we generate an aligned
local window is one of the most popular methods for sterextack ofM images by shifting all of the viewd pixels toward
matching. However, methods based on pixel intensities failreference image. Consider a single 8 M image patch
when used to compute correspondences across color chaniglg;q(u; v; ) centered at pixelp. Spatial dimensions are
To illustrate this, consider the recti ed stereo dataset froindexed byu;v =1;:::; ;8while =1 ;:::;M isthe channel
[60] shown in the top row of Fig. 1. We consider three imageadex. We compute grad|ent magnitudes in each channel by
from the dataset with a disparity search rangd of27 pixels. convolving the patch with a rst-order centered difference
The distribution of erroneous disparity assignments shows tlka&rnel (after applying a Gaussian blur to reduce noise).
87:8% of pixels in textured regions are withih pixel from While the magnitude of image gradients serves as a good
their true value. However, if the input is not the intensity of thproxy for edge location, it is not expected that the gradient
RGB image at each viewpoint, but is instead a unique coloragnitudes are uniform across color channels. To account

IIl. | MAGE ALIGNMENT USING NORMALIZED GRADIENTS
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Fig. 2. Edge alignment across color channelsConsider one row of the £ 60 £ 60

reference image marked by the scanline in (a). Pixel intensity values andg 4q 3 40 I CCNG
gradient magnitudes for the RGB channels are plotted in column (b) for the & § 20 I 1 SSD
| I A | J
10 5 0 5 10

red, green, and blue channels. The intensity plot shows that rapid changes irg 20

Freq

intensity correlate across color channels, but the direction and magnitude iqjl_g 0 0

not consistent. Dashed gray lines on the plots show that gradient magnitudes 10 5 0 5 10

tend to align across multiple color channels. Assignment Error (pixels) Assignment Error (pixels)
(c) NG same channel error (d) NG cross-channel error

for these differences we normalize magnitudes independerfflg: 3 Improved cross-channel correspandence using normalized gra-

f h ch | LeB be th dient itud i1ents: The stereo-matching experiment from Fig. 1 is performed with the
or each channel. u;fpidg D€ the gradient magnitudes Olqqss channel normalized gradient cost (CCNG). When matching within the
|fp;dg in the u-direction. The normalized gradient@,u;fp;dg same channel (@) CCNG is comparable to SSD with8@)7% of pixels

; _di ; ; within 1 pixel of the ground truth. (b) Unlike SSD, the CCNG cost is also
in the u-direction are then given by able reliably to match across channels with {@6% accuracy. As seen in
Gu‘fp'dg(U;V; ) (d), cross-channel matching using CCNG has a much narrower distribution

Gyt pdg(UyVv; ) = (1) of disparity assignments than the SSD result.

kGu;fp;dg(; ) K
where the denominator is the, norm of the patch (com- . _

puted independently for each spectral channel). Following anThe cross-channel normalized gradient (CCNG) cost from
analogous process in thedirection yieldsGy.¢pqq(u;v; ) . EQ- (3) is used to compute a disparity map for the stereo
Concatenating both measures prodl@e§dg(u;v; ) , which Sequence in Fig. 1, and the CCNG results are shown in Fig. 3.
represents the normalized gradientslp;'.dg. In Eq. (1), a When matching across different color channels, as shown in
problem arises for textureless image patches where gradiEigt 3(d), our CCNG cost match@8:6% of the pixels (recall
magnitudes are zero or nearly zero. To avoid numerical iHat SSD matche89:1% of the pixels).

stabilities caused by dividing by values close to zero, a small

epsilon is added to each channelGy;;p,qg andGy:f p,ag- C. Textureless Regions

B. Cross-channel Normalized Gradient (CCNG) Cost Metric The proposed CCNG cost is well suited to match edges

. . . . across channels. However, the accuracy reduces in textureless
If an image patch is to be consistent according to off y

gradient metric, then edges must be aligned across differé%g'onsfj Shom;? |r? Fig. 4'. h h Ei
channels. Therefore, our metric should favor edges that exist i We.a ress this ISsue with a two-step approach. F|rst_, we
multiple channels. We compute a c&%(p: d) for each pixel adaptively vary patch size to use large patches in at regions
and disparity by collapsing along the channel dimension. d small p"%tc'”es near edges. Thus f"’.‘r th_e disparity maps were
taking an element-wise product, edges that are consiste puted witt 8 image patches, which is good for textured

present in each channel will be magni ed. Summing the ggions but poor for at patches. Patch size is determined
responses and taking thé™ root produces our metric,

euristically using the gradient magnitudes from a reference

v view. We choose the the smallest patch sizén = 8; 16)
F X W which hast or more pixels with strong magnitudes in both the
Cp;d) = G pag(Usv; ) (2) u andv directions. We de ne strong magnitudes to be above
uv =1 the 25th percentile of all magnitudes in the reference image.

We further weight the cost for each disparity= 1;::::D If the test is failed for both patch sizes, the patch is deemed
relative to the average costmacross all disparities. The nal @ t€xtureless region amilis set 032

cost,C(p; d), is given as Results of using the varying patch sizes to nd correspon-
dence across color channels can be seen in Fig. 5(a). Many

op-
C(p;d) = w (3) of the holes present in Fig. 3(b) have been lled and the
17 cqp:d) distribution of error is much tighter aroun@ with 80:4%
D 4=1 ’ of all pixels within 1 pixel of the true disparity.
A disparity mapE can be created by nding the dispariy !N @ddition to varying patch size, we also impose a smooth-
which minimizes Eq. (3) for each pixel locatign ness penaltys(p; d) when nding a depth map using Eq. (4),

E(p) = arg cgnin C(p; d): (4) E(p) = arg f,“i” C(p;d)+ S (p;d); )
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Fig. 4. Stability of normalized gradients cost for textured regions: The

CCNG cost metric is designed to robustly align image edges across channelsS 60 £60
Three patches are taken from textured and and three from smooth regions ag: , 3 40
shown in (a). The textured patches strongly favor the true dispdritglétive S S
to the ground truth) while the smooth patches have nearly uniform costs. TheZ 20 I 220 I
CCNG cost alone is insuf cient to nd correspondence in at regions. 29 L Banl | 2 9 ! No-_1
“ "10 5 0o 5 10 % 10 5 0 5 10
Assignment Error (pixels) Assignment Error (pixels)
where is a weighting term. A simple but powerful smoothing (c) NG varying patch size error (d) NG regularized error

term is to penalize differences in disparity assignments bgg. 5. Accurate cross-channel correspondence in at regions using
tween neighboring patches. Let pixghe in the neighborhood, a smoothness penalty:Local correspondence metrics are unable compute

Np, of pixel p in the aligned image stack. By assumingiich 10 & roane, B o0 o e A& hyteral Smootinese
that all connections between neighboring pixels are equal, alty is added to regularize the disparity assignment in Eq. (4). Flat patches

smoothing term could taken as theg distance, are required to have a disparity similar to neighboring patches. Simply varying
patch sizes yield82:1% accuracy in textured regions aB8:4% overall. The
o . . smoothness term further improves accuracy with textured accura@fy. 2%
S(p;d) = jd  dgj; (6)  and overall accuracy 87:6%.
a2N p

whered, is the disparity assigned to the patch centered. at D. Finding Depth Maps for Unrecti ed Data

Using a global smoothing term such as the one in Eq. (6) The previous discussion described how the proposed CCNG
improves accuracy in textureless regions but also leads digorithm is implemented when provided recti ed data, where
severe blurring at depth discontinuities. To combat this, wRe correspondence search space is restricted to a single
implement a bilateral smoothing term similar to one proposefimension. For unrecti ed multi-view stereo, we employ a
by Yoon and Kweon [61]. We assume that neighboring patchgine-sweep stereo algorithm using our proposed CCNG cost
with similar median intensity values belong to the same obje@t compute a depth map. Cameras in the array are assumed
and thus should have the same disparity. A non-uniforfd be xed relative to a reference camera view which may be
weighting is applied to the smoothing term based on thighitrarily chosen, though for convenience will be considered
difference so that depth edges are preserved. to coincide with a centrally located array element. It is further

Let f g denote the median operator. We enforce spatiabsumed that the internal and external camera calibration
weighting using the difference between the median value péirameters are known.

a patch in the reference vieW p.qq(u;v;r), and the median  The depth map is computed by rst hypothesizing a set of

value of a neighboring patchf q.qq(u; v;r), depths, 2 (Omm;1 ), measured along the optical axis of
’ the reference view for the plane sweep step increments. An
(@ = jBpag(U;vir)  Bqag(u;v;n)j: (7) aligned image stack is generated by assuming that all scene

elements lie on a plane at distaret@ . Should the projected
In Eq. (7), the difference is taken within a single referendeixels fall in between pixel coordinates, the value is bicubically
channelr, thus the comparison of intensity values is valid. interpolated. A depth map is computed using Eq. (5) as before.
In order to restrict smoothing to regions of low texture, we

use a sigmoid function to weight the smoothing term. We sEt Cost Metric Validation Through Simulations

the center of the sigmoid's transition banal, to 0:15 and We simulate nding pixel correspondences between chan-
the width, b, to 0:01 in our experiments. Combining thHe; nels of the recti ed stereo image sequence shown in Fig. 1(a).
penalty in Eq. (6) and bilateral weighting from Eq. (7) giveémages from the multi-view stereo sequence are taken from

the complete smoothing term, different viewpoints and objects at different scene depths have
X 1 different disparities. The red channel (taken from the rst
S(p;d) = jd  dgj———— (8) Viewpoint) is used as a reference.
2N, 1+ b In addition, we simulate using GAC for taking direct hy-

perspectral measurements using the “pompoms” hyperspectral
We solve Eq. (5) with the smoothness given by Eq. (8) usirdata provided by Yasuma et al. [3]. TH&0nm channel is
-expansion graph cuts with supplied code from [62], [63Fhosen to be the reference view while the remaining channels
[64]. The result of nding depth maps across color channelwe virtually positioned pixels away from the reference view
with Eg. (5) is shown in Fig. 5(b). along equally distributed orientations.
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Color (RGB) Hyperspectral performance, and (c) full resolution light- eld acquisition and
40~ 90 /——— post-capture refocusing. We show that a simple GAC array
o consisting of4 cameras, each sensing a unique color channel
—_ — SSD . .
5 60 —_GNCC (red, green, blue, and panchromatic as shown in 7(a)), can
520 MI tackle all three of these challenges and provides superior
] 30 — CCNG performance compared to traditional cameras.

I ——— . . -

Four monochrome Point Grey Flg@eachine vision cameras
oL—L L I | 0 Ll (model FL3-U3-13E4M-C) are used to build a prototype GAC
0 2 4 6 8 10 0 2 4 6 8 10

Noise standard deviation (pixels) array. A Fle& color camera having the same sensor with a
CFA is placed adjacent to the reference camera and provides
Fig. 6. Correspondence accuracy for noisy imagesDisparity estimation COmparison images. Each Fgaamera is29mm wide and
performance as a function of image noise for color and hyperspectral imagg8mm tall and, accounting for the width of the lenses, the

The color stereo pair from Fig. 1 and the “pompoms” hyperspectral data: ; ; ;
from Yasuma et al. [3] are used for the simulations. The proposed NG cﬁse“ne between nelghborlng cameras2&smm. As the

degrades gracefully as image noise increases in both imaging regimes wheR&3SOrs in the cameras are responsive to wavelengths up to
the accuracy of GNCC and MI drop signi cantly for noisy hyperspectral00Chm, IR cut lters are attached to all four monochrome

images. Accuracy measurements are the averags afals. cameras. Three color lters (R, G, B) from Edmund Optics
are mounted to the lenses in front of three of the cameras. It

To demonstrate the ef cacy of the proposed algorithm iis importan_t to note that the spectral pro le of these exte_rnal
noisy environments we simulate cross-channel matching tgers are dl_fferent tha_m the CFA_‘ of the color camera which
RGB and HS imaging in the presence of additive Gaussif}fy result in some differences in appearance.
white noise. We compare the computed correspondence of thEC" €ach scene all of the cameras are set to the largest
proposed CCNG algorithm with the correspondences returrfdgrture which permits the entire scene to be in focus. Once
by using the SSD, generalized normalized cross correlatif}f cameras have been set, we perform camera calibration as
(GNCC), and mutual information (MI) metrics. The averagBUt“ned in Sec. IV. The images presented in this paper have
accuracy overl0 trials is shown in Fig. 6. In both RGB P€en gamma corrected for display purposes. o
(Fig. 6(a)) and HS matching (Fig. 6(b)) our proposed cost Color Imaging Without Qolor Cross—talk:_ Tr{;\dmonal
decays gracefully as more noise is added to the system. -ﬂqéorcamerag usegCFA to interleave lters Wlt'h 'dlfferent pass
GNCC metric is unable to extend to hyperspectral imag@é‘nds on neighboring pixels to sample the visible spectrum.

and the performance of mutual information deteriorates wiff® & consequence, cross-talk between adjacent pixels leads
increasing levels of noise to color desaturation and the need for color correction during

post-processing [67]. Furthermore, interpolation artifacts are
introduced when demosaicing the CFA to compute the tris-

- ) timulus values for each pixel. In our GAC array each camera
To facilitate nding accurate correspondences, geometrg sensitive to a single channel, eliminating color cross-talk and

constraints imposed by the array con guration are used {Qq need for demosaicing; however, the four channels must be
limit the search space along epipolar lines. This requirg§sed to create a color image.

knowledge of the internal parameters of each camera and thgye

X e rst compute the depth map using our normalized
relative position between cameras. Once a depth map has bgeRjient cost metric as described in Sec. IIl. The camera with

computed, these parameters are used to warp outlying VigY§ panchromatic (Y) channel is used as the reference camera
to the viewpoint of the reference camera, forming an aligneg 4 the red, green, and blue channels are aligned according

stack of images. to the depth map. After alignment, we avoid a direct fusion

Internal camera parameters are computed using the Caltg¢he RGBY channels because errors in the estimated depth
calibration toolbox [65]. The calibration is performed bylmagmap could lead to a degradation in image quality. Instead,

ing a planar checkerboard patterniib different orientations ;& reconstruct the color image in the YCbCr color space

with each camera in the array. _ using the luminance values from the unltered Y channel
The external relationship between cameras is modeled gg computing chrominance from the aligned R, G, and B
a rigid body transformation. Initial estimates of the rotatiophannels. We smooth the chrominance channels wih &

and translation are computed independently for each outlyipg, ;ssjan convolution kernel to reduce color artifacts which
camera-reference camera pair using the toolbox provided jhse from warping errors. The nal color image is found by
[65]. The estimates for the internal and external paramet"cr&nverting to the RGB color space.

for each camera are then aggregated and optimized en massg Fig. 7, we show a comparison between (e) the color

using the sparse bundle adjustment toolbox [66]. The averagRige recovered using our array and (f) the image captured
reprojection error of 8-D point onto any camera in the armaysyom the color Fled camera. The comparison color image
presented in this paper is betwe@nd  0:4 pixels. is created by demosaicing the raw image of ine using the
method suggested in [68]. Outsets show that unlike our image,
demosaicing artifacts are present in the image captured using
Three important challenges in consumer imaging today aaecolor Iter array. During image acquisition, exposure times
(a) color cross-talk and demosaicing, (b) low light imagingre allowed to vary between cameras, but the analog gain

IV. CAMERA CALIBRATION

V. APPLICATION |: CONSUMERIMAGING
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(a) GAC array (b) Input images

(c) Direct fusion (d) Depth map (e) RGB image from GAC array (f) Bayer RGB image

Fig. 7. RGB image capture and fusion:(a) Three monochrome cameras irRka 2 array record red, green, and blue spectral channels while the fourth
captures the luminance (Y). The captured images are shown in (b). (c) Directly layering the R, G, and B channels results in signi cant artifacts. (d) A depth
map, which is used to align the four viewpoints, is found using our CCNG metric. (e) Color images are fused in the YCbCr color space using luminance
values from the Y channel and chrominance from the aligned R, G, and B channels. (f) A fth camera having the same sensor with a Bayer mosaic is used
to capture a comparison color image. Our GAC array is able to produce a color image with comparable quality to a Bayer RGB image. The color Iters used
in the array and the Bayer lters have different spectral pro les, object color may differ between the images. Please zoom in on the PDF for image details.

e e T e T

(a) Fusion using SAD (b) Fusion using SSD  (c) Fusion using Ml (d) Fusion using GNCC (e) Fusion using CCNG (f) Bayer RGB image

Fig. 8. Depth estimation for RGB fusion: Traditional stereo matching methods such as (a) the sum-of-absolute differences (SAD) and (b) SSD produce
inaccurate depth maps (top row) which lead to color artifacts in the fused color image (bottom row). Cross-channel methods: (c) mutual information, (d)
generalized NCC, and (e) our normalized gradient algorithm yield better depth estimates, though mutual information is inferior to GNCC and CCNG. A color
image captured with a Bayer mosaic is presented in (f) for comparison. The color image outsets exhibit noticeable artifacts in (a), (b), and (c).

is xed at 3dB. The camera array, Fig. 7(a), captures four Low Light Imaging: Demosaicing artifacts are not the only
channels as shown in Fig. 7(b). Due to the wide baseline of tsadvantage of using a traditional color cameras. Traditional
cameras, signi cant parallax is introduced and a color imagmmeras have a global exposure, even though light throughput
cannot be recovered by simply fusing the red, green, and bineindividual color channels is not uniform. In low light
channels into a single image (Fig. 7(c)). Instead, a depth mapvironments, this necessitates larger analog gains in channels
is computed using our proposed algorithm, Fig. 7(d), and tketh low light throughput which ampli es image noise. Using
views are aligned using this depth map. the proposed GAC array, the greater light throughput of the Y

. , ffectivel i ise.
Comparison With State of the Art: Accurate depth maps effectively reduces image noise

are a crucial component for recovering a color image usingln Fig. 9, we consider a typical low light imaging scenario;
our GAC; we compare the performance of our CCNG alga diffuse incandescent light source is used to illuminate an
rithm with stereo matching algorithms in Fig. 8. Traditionalndoor scene. All of the cameras have an exposure duration of
intensity-based stereo matching such as (a) sum-of-absolL®ms, a (generous) limit of a photographer's ability to take
differences (SAD) and (b) SSD produce inaccurate deptnages free of motion blur using a hand-held camera. Gain
maps and the corresponding color images are unappealilegels for each channel are set independently, the Y channel
Algorithms designed for nding cross-channel correspondentas the lowest gain &dB while the gain of red{1dB), green
perform much better than intensity-based metrics. Mutu@ll3dB) and blue {5dB) channels is signi cantly higher. The
information (c) produces a depth map of decent qualitgplor camera used for comparison requires a global value for
though errors persist into the nal color image. Both (djhe analog gain which is set tt8dB in this experiment. Our
generalized NCC and (e) our CCNG metric yield high-qualitgamera array records an image with far less noise (Fig. 9(a))
depth maps. An image captured with a conventional Baytran the color camera (Fig. 9(b)). Notice that ne details
pattern is included in Fig. 8(f) for comparison. Overall, ouaround the eyes are retained by the GAC array while the noise
method produces RGB images that are comparable in qualitythe Bayer image obliterates nearly all detail around the eye.
to conventional color cameras which employ a Bayer patteFine edge structure is also preserved using the GAC array as
as shown in detail in Fig. 7(e) and (f). shown in the outset of the ball cap.
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(a) Bayer RGB image

(a) RGB image from GAC array (b) Noisy Bayer RGB image

Fig. 9. RGB fusion for improved low-light imaging: By allowing one
camera to remain un ltered in the GAC array, higher light throughput is
achieved which improves image quality in low-light environments. Exposuféig. 12. NIR fusion for vein viewing: By adjusting the weight of the NIR
durations were xed afl25ms for all cameras. (a) The image captured witrchannel, an effective vein viewing system can be devised. (a) Vasculature can
the GAC. The light throughput of the Y channel greatly reduces noise in the dif cult to see with unaided traditional RGB cameras. (b) With enhanced
image compared to (b) traditional color image capture using a Bayer mos&®&B+NIR images from our GAC array, veins near the surface of the skin are
The image from the GAC array retains ne image detail around the dogreadily visible.

eyes which is lost in the Bayer image on the right.

(b) Enhanced RGB image from GAC array

light penetrates deeper into human skin than light in the visible
spectrum [22], which in turn can be used to naturally retouch
color images by smoothing blemishes or to help medical
professionals easily see veins in the arm. By adding a fth
monochrome camera to the GAC array described in Sec. V, the
R, G, B, Y, and NIR channels can be captured simultaneously.
An IR pass lter is af xed to the lens of the fth camera.
Following image capture and alignment, a further processing
step is performed before generating the nal RGB composite
image.

We follow the technique of Susstrunk et al. [22], to in-

Fig. 11. NIR fusion for face smoothing: Near-infrared light penetrates corporate NIR information into the Y channel via bilateral
deeper into skin than visible light. The resulting subsurface scattering elllff . The bilat |1t 69 ¢ . int
fectively smooths away surface blemishes. Combining NIR information witl ering. € Dbilatera er [69] separates an image into

RGB images allows for “natural’ image retouching for human skin. (a) AS base and detail components. The two components may
color image captured with a Bayer CFA and (b) the NIR enhanced imaggosely be considered to represent localized low- and high-
recorded using our GAC array. Notice the removal or softening of freckl?s ivelv. Usi he f bil ]
and blemishes. Fequency content, respectively. Using the fast bilateral Iter
approximation suggested by Paris and Durand [70], the Y
_ _ and NIR channels are decomposed into their base and detalil
Post-capture Refocusing: A recent trend in consumer representations. Some, or all, of the detail of the Y channel is

imaging is to coarsely sample the light- eld of a scene whickeplaced with the detail in the NIR image using a weighting
allows for digital refocusing after capturing an image.Currearameter

light- eld cameras capture images with low spatial resolution
and must super resolve a high resolution image. Our GAC ~ Yiused= Ybaset (1 )Ydewit NIRgewi):  (9)

array enables post-capture refocusing on color images Wit oing the fusion of the Y and NIR channels, the chromi-
spatial resolution equal to that of the cameras in the array.ona from the R, G, and B channels are used to recover the
Recovered RGB images, the resulting depth map, aegmposite color image as before.

refocused images for two scenes are shown in Fig. 10. The\ayral Retouching for Portraiture: Imperfections in the
scenes shown in Fig. 10(a) were captured with an aperturessph, o, the face, such as freckles, blemishes, and wrinkles, are

f=4. Using the depth maps the in-focus images were digitalfysq noticeable when viewed in NIR. Using the ve element

refocused using a synthetic aperture fofl to create the Gac array, NIR information is fused with the Y channel to
images in Fig. 10(b)-(d). The refocused images show the effetl ooth facial imperfections.

of changing the focal plane from near, to middle, to far focus We show the effects of this “natural” image retouching in

in eac.h of the scenes. Please view the image digitally af_}%. 11. Shown in Fig. 11 is (a) an image captured with a con-
zoom in to see details. ventional Bayer pattern and (b) an enhanced image captured
with the GAC array ( = 0:75). Many of the undesirable
VI. APPLICATIONII: SKIN PERFUSIONIMAGING surface skin features have been removed and strong blemishes
The exibility of GAC arrays allows additional channelshave been softened signi cantly.
to be incorporated into the array by simply adding additional Vein Viewing: In addition to applications in portrait pho-
cameras. In this way GAC arrays can be leveraged to augmtagraphy, the deeper skin penetration of NIR light can be used
RGB color images with near infrared (NIR) information. NIRn medical applications. For example, veins near the surface

(a) Bayer RGB image (b) Enhanced image from GAC array
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c Reference view Direct overlap O O O
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Depth map GAC array fusion In focus In focus In focus

O O O
O O O

8_ Reference view Direct overlap
B3
w O O O

Depth map GAC array fusion In focus In focus In focus

(a) GAC for RGB fusion /0 (b) Near focus

(c) Mid focus

(d) Far focus

Fig. 10. GAC array RGB fusion and post-capture refocusing: (a) The depth map computed for RGB fusion may be used to digitally refocus the image
post-capture. (b)-(d) The scenes are refocused with a synthetic apertisrd ahd focal plane positioned in the near-, middle-, and background. Zoomed-in
outsets of objects in the near- (red), middle- (green), and background (orange) show the effect of changing the focal plane position. Please view digitally.

of the arm may be dif cult to see in the visible spectrum but
are prominent in NIR. Using the GAC array it is possible to
enhance RGB images to make veins more prominent whil
retaining color information to provide familiar visual cues to
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the user. An example of enhanced vein viewing is shown i
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Fig. 12. The top image is taken with a conventional RG

camera and the bottom image, captured with our GAC array,

has additional NIR information ( = 1). Veins are more
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pronounced and the intricate pathways are easily seen in theof T m=a

image acquired with the GAC array. ! ! I
450 525 600 675

VII. APPLICATION III: HYPERSPECTRALIMAGING ! ) . I
. ) Fig. 13. Recovering hyperspectral measurements using calibration charts:
Commercial hyperspectral cameras are able to achieve hfglectral pro les of a color calibration target are recovered using a dictionary

spectral resolution by trading off spatial or temporal resolutioﬁf. known hyperspectral measurements. Ground truth data (dashed, black plots)
s captured with a HS camera and the recovered spectrum (solid, blue plots)

. . wa
Furthermore, they suffer from poor light throughput whickising the proposed GAC. The average SNR of the reconstructed cu@s is
requires long exposure times and high analog gain which leats Ground truth was captured using Headwall Photonics Micro-Hyperspec

to low SNR in individual spectral bands. We demonstrate hof{N!R imaging spectrometer.
a GAC array can be used to recover hyperspectral video with
10nm resolution, high light throughput, and no loss of spatial

resolution. This represents 30x improvement in spectral gheciral measurements that are then used as ground truth
resolution over RGB cameras and at a fraction of the cqgj evaluating the performance of our GAC hyperspectral

of currently available HS cameras. estimates in Fig. 13, Fig. 14, and Fig. 16.
A straight-forward GAC implementation would be to place

narrow-band Iters in front of each camera element. However, R&cOvering Hyperspectral Data:We use a set of broad-
the use of narrow-band lters results in a low light throughpuf@nd  Iters, each with high transmittance, and whose trans-
We propose a multiplexing strategy, similar to [71] and [72]1iSSion power for a particular discrete wavelengtrs F¢( )

to improve SNR. We demonstrate a proof-of-concept systeffii€rec is the camera index (since each camera has only one
using the5 5 ProFUSION color camera array from Pointter). Post capture, we demultiplex the intensities to produce
Grey as the imaging platform and Roscolux broadband Iter€ Scene spectral re ectanéy( ).

21 cameras were selected to be in the GAC arréywgre If the spectral response of the Bayer patterB{ig ), where
unused due to quality issues). A Headwall Photonics Micré- is the index of the red, green, and blue lIters, then the
Hyperspec VNIR imaging spectrometer was used to captungensity measuremerit of this scene point at cameraand
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=— Reconstructed@ = Ground Truth

o .~ —/\ (a) ProFUSION array  (b) Broadband lters (c) Captured images

450 700450 700450 700
(a) GAC array reference view (b) Recovered spectral pro les

Fig. 14. Hyperspectral recovery for real scenesHyperspectral measure-
ments computed from the aligned image stack usd2gknown spectral
pro les. The average SNR of the reconstructior?&7 dB.

(d) Avg. input images (e) Depth map (f) Avg. aligned images

for color channef I§ Fig. 15. Multiplexed hyperspectral imaging: (a) A5 5 camera array is
_ . outt with (b) broadband optical Iters. (c)21 cameras record multiplexed

ler = By ( )FC( )‘]( )R( )’ (10) images. (d) Direct fusion of the images leads to misaligned images, so (e)

a depth map is found using the CCNG cost. (f) The average of the aligned

where J is the (unknown) spectral response of the illumiima9es shows the quality of the depth map.

nation. By demosaicing the raw Bayer image data, we can
obtain all three color channels at every pixel. Therefore, if

_ single Iter which yields the smallest condition number and
there areC = 21 cameras an@ color channels we get a total’ : o ) . .
_ B , iteratively choose additional Iters in this manner until we
of M = 3C =63 measurements at each scene point.

. have the2l Iters that are used in the array.
If we combine the known Iter and Bayer spectral responses .

Static Scene RecoveryWe demonstrate our method rst
with a static calibration scene (Fig. 13) consisting of a Gretag
Macbeth digital SG color chart with40 squares and28
spectra levels. Repetitive color samples andhelassic color
checkers are not considered, leaviNg = 58 unique color
samples. Limited energy in the blue end of the visible spectrum
restricted accurate spectral measurements to the r3@pen-
which in vector notation i$ = FR. We propose a calibration 70onm. We then took a second image of the classic color
step that allows us to recover the unknown spectral re ectanggecker with24 color swatches and recovered the squares' true
of a scene point. Our method does not require recovery of t§ectra using Eq. (12) and Eq. (13). Fig. 13 shows the real and
M S mixing matrix F. recovered spectra for a selection of the squares. The spectral

We rst take images of a color chart and captureMn N response of each square was recovered with an average SNR
matrix |, whereN is the number of color chart squares, suchf 23:7dB.

that| = FR. True spectral proles are recorded using the |, the second experiment, we imaged the static scene shown
Headwall HS camera and stored ifa N matrix T. Given i, Fig. 14. The digital SG color checker is again used for
a lengthM  vector of measurements for some scene point cajipration, and the recovered spectral response of selected
obtained by the imaging process of Eq. (11), we learn a spag@ne points is shown in Fig. 14. Fig. 15 gives an overview of
set of coef cients! that reconstrucK usingl as a dictionary, the jmaging process and shows the need for image alignment.
arg minkX 11k where k! ko : (12) Hyperspectral Video: An advantage of hyperspectral
! GACs is their ability to capture video data. Using the same
where is a threshold on sparsity. Assuming linearity in th@rocedure as Fig. 1440 frames of a dynamic scene were
camera responses, the weighting coef ciehtsan be used to captured atl5 fps. In the video, two arms move throughout
reconstruct the unknown re ectance ¥f, R, usingT, the FOV of the array. Camera elements within the array are
B=Tr (13) synchronized an(_j share the same exposure and gain settings.
- 5 frames of the video and the spectral reconstructions for two
Therefore, given a calibration color-chart image, taken undexanually speci ed scene points are shown in Fig. 16.
the same unknown illuminatiod as the scene, and given the Reconstruction Quality: In addition to providing color
measurementX at a scene point, we nd the sparse weightshecker calibration data, the Micro-Hyperspec imager is used
I to reconstruct the measuremerds from the multiplexed to provide ground truth spectral measurements. Ground truth
color chart image dath. We use thesameweights directly spectral data acquisition todl) seconds per scene, precluding
on the known spectral responses of the color chart to recotkee use of the Micro-Hyperspec for video capture. Using our
the spectral responsR of the scene point. We choose théSAC we were able to capture the scen@dms and recovered
Iters from a Roscolux booklet using a greedy algorithm tahe spectral pro les with an average reconstruction SNR of
minimize the condition number df. To begin, we select the 25:7dB for the scene points in Fig. 14 ark¥:8dB for the

the illuminationJ into the re ectanceR, summing over the
S discrete spectral bins gives,

x
Im = Fm( )RC( i); (112)
i=1
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Frame 1 Frame 10 Frame 25
T T T T (a) GAC array image (b) Recovered depth (c) Bayer image

Fig. 18. Failure for specular materials: Like many stereo correspondence
algorithms, our proposed method assumes scene elements are diffuse. When
e this assumption is violated, the depth map is resolved inaccurately, leading
=30 Light Skin to garish image artifacts as shown in (a) the recovered image and (b) depth
— _ Dark Skin map. (c) An image captured with a Bayer CFA is provided for comparison.
I

I I I
Frame 35 450 525 600 675 Frame 39

7
7
=%7

W

Fig. 16. Hyperspectral Video using a GAC: Average recon SNR i27:8dB Of. the camera views to be Warped to an. arbltrary viewpoint
relative to ground truth collected with static scene elements. Aside from tMdthin the camera array. Moreover, the simultaneous capture

difference in magnitude, the light skin patches have a pedi@eam, while of scene information allows for imaging of dynamic scenes
the dark skin patches peak @50nm. and video capture

Advantages: Generalized assorted camera arrays offer the
following advantages compared to traditional imaging sys-
tems: (1) Adaptability: Cameras in the array can be controlled
independently or as a whole to adapt to novel lighting and
scene changes without compromising imaging quality. (2)
Flexibility: By changing the lter arrangement in front of
_ each camera it is easy to con gure the camera array to t
(a) HS Reference view (b) Depth from SAD  (c) Depth from SSD  gpplication-speci ¢ imaging domains. (3) Increased resolution
and SNR for hyperspectral imaging: Simultaneously capturing
many multiplexed views with the camera array allows for
greater temporal resolution in recorded images and video as
well as higher light throughput.

Limitations: Camera arrays are not suitable for all imaging
situations. GAC arrays will suffer from many of the same lim-
itations as stereo camera systems. In addition to well-known

' ) . . problems with accurate depth estimation for thin structures at
Fig. 17. Comparison of Depth Estimation on Multispectral Data: A . s
depth map for the scene in (a) is computed using (b) SAD, (c) SSD, (gf:'p.th bound‘f"“esa GAC_ arrays face two main limitations. The
MI, (e) GNCC, and (f) our NG cost. As with RGBY fusion (Fig. 8) the rst is proximity, and objects that are close to the sensors will
intensity-based metrics and mutual information (b)-(d) yield inaccurate degih pe present in the FOV of all cameras. Therefore, there
maps. Generalized NCC (e) has spurious errors in the depth map, even within o . . S :

£XIsts a minimum operating distance which is a function of

the camera array baseline. Adding more elements to the array
(or using larger cameras) increases the minimum operating
scene pOintS in the video. Ground truth data for the video Waktance. The second limitation is common among stereo
collected with both hands resting stationary on the table. matching algorithms, namely that point correspondences for

Comparison With State of the Art Stereo Matching: scenes with specularities and refractive media are not faithfully
Fig. 17 compares the performance of various stereo-matchi@@overed as seen in Fig. 18. The gure shows signi cant
algorithms. As with matching across color channels, the integrrors in the recovered color image when compared with an
sity based metrics and mutual information (b)-(d) yield pogfage from a conventional color camera. Outsets highlight a
depth estimates. Generalized NCC also returns a noisy deffly failure cases due to specularity on the glass bottle and
map while our proposed CCNG algorithm is able to return @fractions due to water and glass.

high quality depth map.

(d) Depth from Mi (e) Depth from GNCC (f) Depth from NG (ours)

textured regions. The proposed method (f) offers superior depth estimate
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