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Abstract—One popular technique for multi-modal imaging is
Generalized Assorted Pixels (GAP), where an assorted pixel
array on the image sensor allows for multi-modal capture.
Unfortunately GAP is limited in its applicability because of
the need for multi-modal filters that are amenable with semi-
conductor fabrication processes and results in a fixed multi-modal
imaging configuration. In this paper, we advocate for Generalized
Assorted Camera (GAC) arrays for multi-modal imaging—i.e.,
a camera array with filters of different characteristics placed
in front of each camera aperture. GAC provides us with three
distinct advantages over GAP: ease of implementation, flexible
application dependent imaging since filters are external and can
be changed and depth information that can be used for enabling
novel applications (e.g. post-capture refocusing). The primary
challenge in GAC arrays is that since the different modalities are
obtained from different viewpoints, there is a need for accurate
and efficient cross-channel registration. Traditional approaches
such as SSD, SAD, and mutual information all result in multi-
modal registration errors. Here, we propose a robust cross-
channel matching cost function, based on aligning normalized
gradients, that allows us to compute cross-channel sub-pixel
correspondences for scenes exhibiting non-trivial geometry. We
highlight the promise of GAC arrays with our cross-channel
normalized gradient cost for several applications such as low
light imaging, post-capture refocusing, skin perfusion imaging
using RGB+NIR and hyperspectral imaging.

I. INTRODUCTION

Traditional methods for multi-modal acquisition–such as

using hyperspectral imagers–trade-off temporal resolution in

order to improve spectral resolution by the use of either

a spectrally-tunable filter [1] or by using line-scan cameras

and a method for spatial scan of the scene [2]. While these

methods are popular techniques for hyperspectral acquisition,

they are often limited to static scenes and result in objection-

able motion-related artifacts in dynamic scenes. Generalized

Assorted Pixels (GAP) is slowly gaining popularity as a

method for acquiring spectral [3], [4], [5], polarization [3],

[4], and angular information [6] on a single image sensor.

Unfortunately, several challenges to its widespread adoption

remain: Fabrication–GAP requires nano-scale manufacturing

techniques that can produce filters in a manner that is compat-

ible with semiconductor fabrication processes, Cost–currently

available GAP sensors such as those offered by PixelTeq and

IMEC are expensive, and Resolution–the use of GAP results
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in loss of spatial resolution and often produces low-resolution

hyperspectral images (e.g., 256× 256 resolution in IMEC).

The GAP strategy is to place filters on a single sensor.

Generalized camera arrays, where multi-modal filters are at-

tached to the aperture of multiple cameras, are an alternative

solution. We advocate Generalized Assorted Camera (GAC)

arrays, which mitigate the fabrication, cost and resolution

challenges faced by GAP and enable high resolution, flexible

(application-dependent), multi-modal imaging without making

restrictive assumptions about scene geometry.

In this paper we make two important advances, we improve

cross channel registration and highlight several applications of

GAC arrays.

Cross-channel Registration: Traditional multi-view stereo

methods assume brightness constancy across the images from

each camera in the array, which is violated when the views

observe different modalities. One solution is to repeat cameras

for each modality which increases the number of cameras in

the array. For example, Pelican Imaging [7], uses an array with

16 cameras to obtain 3 channels. Instead of this inefficient

use of cameras, we propose a cross-channel multi-modal

registration cost function that is based on aligning normalized

gradients. This allows us to make efficient use of the cameras

in our array enabling us to capture similar fidelity registration

across channels with far fewer cameras.

Applications: We highlight the promise of GAC arrays

on several applications such as (a) low light imaging, (b)

post-capture refocusing, (c) skin perfusion imaging using

RGB+NIR, and (d) hyperspectral imaging.

A. Motivating Applications

Camera Arrays for Smartphones: Manufacturers of

smartphone cameras have begun using camera arrays to reduce

the thickness of the camera module [7], [13]. By distributing

channel measurements to separate sensors, the GAC array

eliminates demosaicing artifacts, and the additional viewpoints

enable post-capture digital refocusing (similar to the capabili-

ties of the Lytro camera [14], [15]). Unlike the work presented

in [7], where more than one array element measures the

same channel, we demonstrate RGB fusion where each camera

records a unique channel, significantly reducing the number of

cameras in the array.

Flexible Application-dependent Imaging: The flexibility

gained by using GAC arrays allows for targeted deployment

tailored to the requirements of specific systems. Applications

such as measuring blood oxygenation and heart rate [16],
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TABLE I
COMPARISON OF SPECTRAL ACQUISITION METHODS WITHIN THE VISIBLE SPECTRUM

Camera Arrays

Time seq.
Prog filter

[8]

Time Seq.
scanline

[2]

Snapshot
(GAP)

[3], [4], [5]

Co-location
[9], [10]

Repeated
cameras*

[7]

Planar
assumption
[11], [12]

Ours (GAC)

Cost $$ $$ $$$ $$ $ $ $
Handles Motion No No Yes Yes Yes Yes Yes

Spatial Resolution Low High Low
Low [9]

High [10]
Low High High

Complex Geometry Yes Yes Yes Yes Yes No Yes

# Cams / # Spectra 1/33 1/175
1/7 [3], 1/8 [4],

1/45 [5]
1/9 [9],
8/8 [10]

16/3
5/5 [11],
12/12 [12]

21/28

Light Throughput Low Low Low Low High* Low High
*Repeated cameras is implemented only for RGB fusion

material classification [17], [18], viewing veins [19], moni-

toring the ripeness of fruit [20], shadow detection [21], and

natural image retouching [22] only require information from

a few specific channels to achieve the desired outcome. We

demonstrate an implementation of a GAC array to naturally

retouch portraits and to enhance the visibility of veins in arms.
Hyperspectral Imaging: Hyperspectral (HS) cameras pro-

vide spectral signatures that can be used for object classifi-

cation [23], retinal imaging [24], [25], environmental imag-

ing [26], and surveillance [27]. Current HS cameras have

limited spatio-temporal resolution and must record numerous

measurements of the scene in a serial manner. While this is

acceptable for static scenes, such HS systems cannot be used

to capture dynamic scenes. GAC arrays have been proposed

to circumvent these limitations and record video with high

spatial, temporal, and spectral resolution [10], [11], [12],

[28]. Previous solutions involving GAC arrays suffer from

poor signal-to-noise ratios and require either simple scene

geometries [11], [12], complicated optics to co-locate images

[10], or inflexible design parameters [28]. Table I compares

the qualities of existing hyperspectral imaging systems. We

propose a solution using a GAC array with inexpensive

commodity broadband filters placed before each camera. The

final hyperspectral image is recovered by demultiplexing the

captured data.

B. Contributions

Specifically, we present the following contributions:

• Design and test a novel normalized gradient cost metric

to compute point correspondences across color channels.
• Reduce the camera-to-channel ratio of GAC arrays by

removing repetitive channel measurements without sacri-

ficing spatial resolution or light throughput.
• Use our cross-channel registration technique to show that

GAC arrays can be used for RGB fusion, post-capture

refocusing and low light imaging.
• Incorporate side-band near-infrared information to per-

form application-specific tasks such as image retouching

and enhancing the visibility of veins.
• Demonstrate that GAC arrays can be used for capturing

hyperspectral video. Each camera captures multiplexed

broadband spectral measurements, which increases the

light throughput.

II. RELATED WORK

RGB Fusion: Conventional color cameras use a color filter

array (CFA) followed by demosaicing to sample the visible

spectrum of light. While the Bayer pattern [29] is the most

common CFA, other patterns have been proposed to improve

the rendered image quality [30], [31]. These approaches sac-

rifice spatial resolution in favor of higher spectral sampling.

To avoid reduction in spatial resolution, multiple sensors

may be used to capture color channels independently. Foveon

[32] created a camera which optically separates color channels

through dispersing prisms onto three separate sensors. PiCam

[7] uses a camera array and duplicates each color channel

to allow intra-modality depth reconstruction. Our approach

does not require complicated and thick optics or repetitious

sampling of the same modality.

Hyperspectral Imaging: A common approach for hyper-

spectral imaging of static scenes is to capture a sequential

series of images using narrowband filters [1]. Hyperspectral

video can be realized by adding elements along the optical path

such as a dynamic mirror [33], Lyot filter [34], aperture filters

[35], novel mirror based hardware [9], diffraction grating [36],

or a dispersing prism [37], [38], [39], to create smaller, low-

resolution images on a single sensor. The spectral imaging

system by Wagadarikar et al. [40] uses a coded aperture to

make sparse measurements of a scene which is then recovered

using compressive sensing techniques; cumbersome optics

limits the flexibility of the system. Efforts to extend CFAs

to enable hyperspectral imaging have led to reduced spatial

resolution and demosaicing artifacts [3], [4], [5].

Hyperspectral GAC arrays, such as our design, can produce

full resolution images but require image registration. Previous

work has performed this registration assuming distant or planar

scenes [12] or by using hand marked key points [11]. An

alternate approach is to directly apply regular stereo metrics on

filters with adjacent center wavelengths [28] and apply depth

fusion for the final scene structure, but this imposes limits on

array configuration and composition.

Multiplexing hyperspectral illumination is yet another ap-

proach which has proven successful [41], [42]. To achieve

high quality reconstruction these methods temporally multi-

plex many illumination sources, each with a different spectral

profile. Therefore, this approach suffers from motion artifacts
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when imaging dynamic scenes. Our work achieves passive,

high quality reconstructions for dynamic scenes and does not

require a priori knowledge of the illumination spectrum.

Image Alignment: Fusing views from a camera array is

difficult because each image is taken from a different vantage

point, which introduces depth-dependent disparity. Traditional

methods for aligning two images using stereo matching on

rectified image pairs are quite mature (see [43] for a review of

relevant algorithms). Robust multi-view stereo algorithms (see

[44] for a survey of the literature) can be used to reconstruct a

3-D model of the scene for arrays of many cameras provided

that each camera is operating in the same modality.

Image registration across modalities (e.g. cameras recording

different spectral bands) is still difficult, due to the lack of

shared information between views. Irani and Anandan [45]

reduce registration complexity by assuming planar scenes and

fuse images by matching edges within a global framework.

Peng et al. [46] align linearly correlated images by minimizing

the rank of the aligned image stack. Bando et al. [47] use

a generalized normalized cross-correlation metric to register

images captured in the red, green, and blue channels typical of

color imaging. The use of mutual information as a registration

metric was proposed by Woods et al. [48] and refined by Hill

et al. [49] to align MRI and PET images, but the results suffer

in the presence of image noise.

Gradient information has been successfully incorporated in

traditional stereo-matching algorithms [50], [51], [52], [53],

particularly to increase robustness to radiometric variation

[54], [55]. A cross-channel stereo matching algorithm was

proposed by Pinggera et al. [56] which matches dense his-

togram of gradient (HOG) descriptors between images taken in

different spectral bands. In simulated results, matching using

HOG descriptors performed well, but tests on real images lead

to coarse and inaccurate depth maps. Using normalized gra-

dients to compute global registration for medical images was

proposed by Haber and Modersitzki [57] and extended Rühaak

et al. [58] and by Hodneland et al. [59] among others. These

works are intended to align medical images (e.g. MRI, PET,

and CT scans) in a global framework with local deformation

model. Such an approach is unable to align images with depth-

based disparities where depth discontinuities are common.

We propose an image alignment algorithm which extends

normalized gradients to align cross-channel perspective images

in the gradient domain, which we now explain in detail.

III. IMAGE ALIGNMENT USING NORMALIZED GRADIENTS

Computing the sum-of-squared differences (SSD) over a

local window is one of the most popular methods for stereo

matching. However, methods based on pixel intensities fail

when used to compute correspondences across color channels.

To illustrate this, consider the rectified stereo dataset from

[60] shown in the top row of Fig. 1. We consider three images

from the dataset with a disparity search range of 1−27 pixels.

The distribution of erroneous disparity assignments shows that

87.8% of pixels in textured regions are within 1 pixel from

their true value. However, if the input is not the intensity of the

RGB image at each viewpoint, but is instead a unique color

(a) Reference view (b) True disparity

(c) SSD same channel disparity (d) SSD cross-channel disparity
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Fig. 1. Failure of standard stereo algorithms to match across channels:
The sum-of-squared differences cost is used to find correspondence for (a) a
scene from [60] with (b) known disparity. Matching is performed using (c)
the luminance and (d) different color channels at each viewpoint. Accuracy is
computed using the top 20% of pixels sorted by gradient magnitude. As seen
in (e) SSD matching performs well within the same channel with 87.8%
of correspondences accurate to within 1 pixel of the correct disparity; (f)
performance across color channels suffers with an accuracy of only 39.1%.

channel (red, green, and blue from the first, second, and third

views respectively) the computed disparity map (Fig. 1(d)) is

of significantly lower quality. Not only is the disparity map

wrong, the distribution of error for textured regions is much

wider than when matching within a channel. Only 39.1% of

pixels are within 1 pixel of the correct disparity while over

25% are more than 6 pixels away from the correct disparity.

A. Color Channel Gradients

While pixel intensities may vary between color channels,

the location of edges are aligned as shown in Fig. 2. Thus,

matching edges across color channels should yield a higher

fidelity disparity map than matching pixel intensities.

Given a hypothesized disparity, d, we generate an aligned

stack of M images by shifting all of the views d pixels toward

a reference image. Consider a single 8× 8×M image patch

I{p,d}(u, v,Λ) centered at pixel p. Spatial dimensions are

indexed by u, v = 1, . . . , 8 while Λ = 1, . . . ,M is the channel

index. We compute gradient magnitudes in each channel by

convolving the patch with a first-order centered difference

kernel (after applying a Gaussian blur to reduce noise).

While the magnitude of image gradients serves as a good

proxy for edge location, it is not expected that the gradient

magnitudes are uniform across color channels. To account
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Fig. 2. Edge alignment across color channels: Consider one row of the
reference image marked by the scanline in (a). Pixel intensity values and
gradient magnitudes for the RGB channels are plotted in column (b) for the
red, green, and blue channels. The intensity plot shows that rapid changes in
intensity correlate across color channels, but the direction and magnitude is
not consistent. Dashed gray lines on the plots show that gradient magnitudes
tend to align across multiple color channels.

for these differences we normalize magnitudes independently

for each channel. Let Gu,{p,d} be the gradient magnitudes of

I{p,d} in the u-direction. The normalized gradients, Ĝu,{p,d}

in the u-direction are then given by

Ĝu,{p,d}(u, v,Λ) =
Gu,{p,d}(u, v,Λ)

‖Gu,{p,d}(·, ·,Λ)‖
, (1)

where the denominator is the L2 norm of the patch (com-

puted independently for each spectral channel). Following an

analogous process in the v-direction yields Ĝv,{p,d}(u, v,Λ).

Concatenating both measures produces Ĝ{p,d}(u, v,Λ), which

represents the normalized gradients of I{p,d}. In Eq. (1), a

problem arises for textureless image patches where gradient

magnitudes are zero or nearly zero. To avoid numerical in-

stabilities caused by dividing by values close to zero, a small

epsilon is added to each channel in Gu,{p,d} and Gv,{p,d}.

B. Cross-channel Normalized Gradient (CCNG) Cost Metric

If an image patch is to be consistent according to our

gradient metric, then edges must be aligned across different

channels. Therefore, our metric should favor edges that exist in

multiple channels. We compute a cost C ′(p, d) for each pixel

and disparity by collapsing along the channel dimension. By

taking an element-wise product, edges that are consistently

present in each channel will be magnified. Summing these

responses and taking the M th root produces our metric,

C ′(p, d) = − M

√√√√∑

u,v

M∏

Λ=1

Ĝ{p,d}(u, v,Λ). (2)

We further weight the cost for each disparity, d = 1, . . . , D,

relative to the average cost at p across all disparities. The final

cost, C(p, d), is given as

C(p, d) =
C ′(p, d)

1

D

D∑
d=1

C ′(p, d)

. (3)

A disparity map E can be created by finding the disparity d
which minimizes Eq. (3) for each pixel location p,

E(p) = arg min
d

C(p, d). (4)

(a) NG same channel disparity (b) NG cross-channel disparity
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Fig. 3. Improved cross-channel correspondence using normalized gra-
dients: The stereo-matching experiment from Fig. 1 is performed with the
cross-channel normalized gradient cost (CCNG). When matching within the
same channel (a) CCNG is comparable to SSD with (c) 86.7% of pixels
within 1 pixel of the ground truth. (b) Unlike SSD, the CCNG cost is also
able reliably to match across channels with (d) 78.6% accuracy. As seen in
(d), cross-channel matching using CCNG has a much narrower distribution
of disparity assignments than the SSD result.

The cross-channel normalized gradient (CCNG) cost from

Eq. (3) is used to compute a disparity map for the stereo

sequence in Fig. 1, and the CCNG results are shown in Fig. 3.

When matching across different color channels, as shown in

Fig. 3(d), our CCNG cost matches 78.6% of the pixels (recall

that SSD matches 39.1% of the pixels).

C. Textureless Regions

The proposed CCNG cost is well suited to match edges

across channels. However, the accuracy reduces in textureless

regions as shown in Fig. 4.

We address this issue with a two-step approach. First, we

adaptively vary patch size to use large patches in flat regions

and small patches near edges. Thus far the disparity maps were

computed with 8×8 image patches, which is good for textured

regions but poor for flat patches. Patch size is determined

heuristically using the gradient magnitudes from a reference

view. We choose the the smallest patch size n (n = 8, 16)

which has 6 or more pixels with strong magnitudes in both the

u and v directions. We define strong magnitudes to be above

the 25th percentile of all magnitudes in the reference image.

If the test is failed for both patch sizes, the patch is deemed

a textureless region and n is set to 32.

Results of using the varying patch sizes to find correspon-

dence across color channels can be seen in Fig. 5(a). Many

of the holes present in Fig. 3(b) have been filled and the

distribution of error is much tighter around 0, with 80.4%
of all pixels within 1 pixel of the true disparity.

In addition to varying patch size, we also impose a smooth-

ness penalty S(p, d) when finding a depth map using Eq. (4),

E(p) = arg min
d

C(p, d) + µS(p, d), (5)
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Fig. 4. Stability of normalized gradients cost for textured regions: The
CCNG cost metric is designed to robustly align image edges across channels.
Three patches are taken from textured and and three from smooth regions as
shown in (a). The textured patches strongly favor the true disparity (0 relative
to the ground truth) while the smooth patches have nearly uniform costs. The
CCNG cost alone is insufficient to find correspondence in flat regions.

where µ is a weighting term. A simple but powerful smoothing

term is to penalize differences in disparity assignments be-

tween neighboring patches. Let pixel q be in the neighborhood,

Np, of pixel p in the aligned image stack. By assuming

that all connections between neighboring pixels are equal, the

smoothing term could taken as the L1 distance,

S(p, d) =
∑

q∈Np

|d− dq|, (6)

where dq is the disparity assigned to the patch centered at q.

Using a global smoothing term such as the one in Eq. (6)

improves accuracy in textureless regions but also leads to

severe blurring at depth discontinuities. To combat this, we

implement a bilateral smoothing term similar to one proposed

by Yoon and Kweon [61]. We assume that neighboring patches

with similar median intensity values belong to the same object

and thus should have the same disparity. A non-uniform

weighting is applied to the smoothing term based on this

difference so that depth edges are preserved.

Let {̃·} denote the median operator. We enforce spatial

weighting using the difference between the median value of

a patch in the reference view, Ĩ{p,d}(u, v, r), and the median

value of a neighboring patch, Ĩ{q,d}(u, v, r),

δ(q) = |Ĩ{p,d}(u, v, r)− Ĩ{q,d}(u, v, r)|. (7)

In Eq. (7), the difference is taken within a single reference

channel r, thus the comparison of intensity values is valid.

In order to restrict smoothing to regions of low texture, we

use a sigmoid function to weight the smoothing term. We set

the center of the sigmoid’s transition band, a, to 0.15 and

the width, b, to 0.01 in our experiments. Combining the L1

penalty in Eq. (6) and bilateral weighting from Eq. (7) gives

the complete smoothing term,

S(p, d) =
∑

q∈Np

|d− dq|
1

1 + e
δ(q)−a

b

. (8)

We solve Eq. (5) with the smoothness given by Eq. (8) using

α-expansion graph cuts with supplied code from [62], [63],

[64]. The result of finding depth maps across color channels

with Eq. (5) is shown in Fig. 5(b).

(a) NG and varying patch sizes (b) Fully regularized NG
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Fig. 5. Accurate cross-channel correspondence in flat regions using
a smoothness penalty: Local correspondence metrics are unable compute
disparity in flat regions. We add a varying patch size (a) to increase the
likelihood of having gradients to match within a patch. A bilateral smoothness
penalty is added to regularize the disparity assignment in Eq. (4). Flat patches
are required to have a disparity similar to neighboring patches. Simply varying
patch sizes yields 82.1% accuracy in textured regions and 80.4% overall. The
smoothness term further improves accuracy with textured accuracy of 86.2%
and overall accuracy of 87.6%.

D. Finding Depth Maps for Unrectified Data

The previous discussion described how the proposed CCNG

algorithm is implemented when provided rectified data, where

the correspondence search space is restricted to a single

dimension. For unrectified multi-view stereo, we employ a

plane-sweep stereo algorithm using our proposed CCNG cost

to compute a depth map. Cameras in the array are assumed

to be fixed relative to a reference camera view which may be

arbitrarily chosen, though for convenience will be considered

to coincide with a centrally located array element. It is further

assumed that the internal and external camera calibration

parameters are known.
The depth map is computed by first hypothesizing a set of

depths, Ω ∈ (0mm,∞), measured along the optical axis of

the reference view for the plane sweep step increments. An

aligned image stack is generated by assuming that all scene

elements lie on a plane at distance d ∈ Ω. Should the projected

pixels fall in between pixel coordinates, the value is bicubically

interpolated. A depth map is computed using Eq. (5) as before.

E. Cost Metric Validation Through Simulations

We simulate finding pixel correspondences between chan-

nels of the rectified stereo image sequence shown in Fig. 1(a).

Images from the multi-view stereo sequence are taken from

different viewpoints and objects at different scene depths have

different disparities. The red channel (taken from the first

viewpoint) is used as a reference.
In addition, we simulate using GAC for taking direct hy-

perspectral measurements using the “pompoms” hyperspectral

data provided by Yasuma et al. [3]. The 550nm channel is

chosen to be the reference view while the remaining channels

are virtually positioned 5 pixels away from the reference view

along equally distributed orientations.
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Fig. 6. Correspondence accuracy for noisy images: Disparity estimation
performance as a function of image noise for color and hyperspectral images.
The color stereo pair from Fig. 1 and the “pompoms” hyperspectral dataset
from Yasuma et al. [3] are used for the simulations. The proposed NG cost
degrades gracefully as image noise increases in both imaging regimes whereas
the accuracy of GNCC and MI drop significantly for noisy hyperspectral
images. Accuracy measurements are the average of 10 trials.

To demonstrate the efficacy of the proposed algorithm in

noisy environments we simulate cross-channel matching for

RGB and HS imaging in the presence of additive Gaussian

white noise. We compare the computed correspondence of the

proposed CCNG algorithm with the correspondences returned

by using the SSD, generalized normalized cross correlation

(GNCC), and mutual information (MI) metrics. The average

accuracy over 10 trials is shown in Fig. 6. In both RGB

(Fig. 6(a)) and HS matching (Fig. 6(b)) our proposed cost

decays gracefully as more noise is added to the system. The

GNCC metric is unable to extend to hyperspectral images

and the performance of mutual information deteriorates with

increasing levels of noise.

IV. CAMERA CALIBRATION

To facilitate finding accurate correspondences, geometric

constraints imposed by the array configuration are used to

limit the search space along epipolar lines. This requires

knowledge of the internal parameters of each camera and the

relative position between cameras. Once a depth map has been

computed, these parameters are used to warp outlying views

to the viewpoint of the reference camera, forming an aligned

stack of images.

Internal camera parameters are computed using the Caltech

calibration toolbox [65]. The calibration is performed by imag-

ing a planar checkerboard pattern in 15 different orientations

with each camera in the array.

The external relationship between cameras is modeled as

a rigid body transformation. Initial estimates of the rotation

and translation are computed independently for each outlying

camera-reference camera pair using the toolbox provided in

[65]. The estimates for the internal and external parameters

for each camera are then aggregated and optimized en masse

using the sparse bundle adjustment toolbox [66]. The average

reprojection error of a 3-D point onto any camera in the arrays

presented in this paper is between 0.1− 0.4 pixels.

V. APPLICATION I: CONSUMER IMAGING

Three important challenges in consumer imaging today are

(a) color cross-talk and demosaicing, (b) low light imaging

performance, and (c) full resolution light-field acquisition and

post-capture refocusing. We show that a simple GAC array

consisting of 4 cameras, each sensing a unique color channel

(red, green, blue, and panchromatic as shown in 7(a)), can

tackle all three of these challenges and provides superior

performance compared to traditional cameras.

Four monochrome Point Grey Flea3 machine vision cameras

(model FL3-U3-13E4M-C) are used to build a prototype GAC

array. A Flea3 color camera having the same sensor with a

CFA is placed adjacent to the reference camera and provides

comparison images. Each Flea3 camera is 29mm wide and

29mm tall and, accounting for the width of the lenses, the

baseline between neighboring cameras is 29.5mm. As the

sensors in the cameras are responsive to wavelengths up to

1000nm, IR cut filters are attached to all four monochrome

cameras. Three color filters (R, G, B) from Edmund Optics

are mounted to the lenses in front of three of the cameras. It

is important to note that the spectral profile of these external

filters are different than the CFA of the color camera which

may result in some differences in appearance.

For each scene all of the cameras are set to the largest

aperture which permits the entire scene to be in focus. Once

the cameras have been set, we perform camera calibration as

outlined in Sec. IV. The images presented in this paper have

been gamma corrected for display purposes.

Color Imaging Without Color Cross-talk: Traditional

color cameras use a CFA to interleave filters with different pass

bands on neighboring pixels to sample the visible spectrum.

As a consequence, cross-talk between adjacent pixels leads

to color desaturation and the need for color correction during

post-processing [67]. Furthermore, interpolation artifacts are

introduced when demosaicing the CFA to compute the tris-

timulus values for each pixel. In our GAC array each camera

is sensitive to a single channel, eliminating color cross-talk and

the need for demosaicing; however, the four channels must be

fused to create a color image.

We first compute the depth map using our normalized

gradient cost metric as described in Sec. III. The camera with

the panchromatic (Y) channel is used as the reference camera

and the red, green, and blue channels are aligned according

to the depth map. After alignment, we avoid a direct fusion

of the RGBY channels because errors in the estimated depth

map could lead to a degradation in image quality. Instead,

we reconstruct the color image in the YCbCr color space

using the luminance values from the unfiltered Y channel

and computing chrominance from the aligned R, G, and B

channels. We smooth the chrominance channels with a 5× 5
Gaussian convolution kernel to reduce color artifacts which

arise from warping errors. The final color image is found by

converting to the RGB color space.

In Fig. 7, we show a comparison between (e) the color

image recovered using our array and (f) the image captured

from the color Flea3 camera. The comparison color image

is created by demosaicing the raw image offline using the

method suggested in [68]. Outsets show that unlike our image,

demosaicing artifacts are present in the image captured using

a color filter array. During image acquisition, exposure times

are allowed to vary between cameras, but the analog gain
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(a) GAC array (b) Input images

(c) Direct fusion (d) Depth map

Y R

G B

(e) RGB image from GAC array (f) Bayer RGB image

Fig. 7. RGB image capture and fusion: (a) Three monochrome cameras in a 2 × 2 array record red, green, and blue spectral channels while the fourth
captures the luminance (Y). The captured images are shown in (b). (c) Directly layering the R, G, and B channels results in significant artifacts. (d) A depth
map, which is used to align the four viewpoints, is found using our CCNG metric. (e) Color images are fused in the YCbCr color space using luminance
values from the Y channel and chrominance from the aligned R, G, and B channels. (f) A fifth camera having the same sensor with a Bayer mosaic is used
to capture a comparison color image. Our GAC array is able to produce a color image with comparable quality to a Bayer RGB image. The color filters used
in the array and the Bayer filters have different spectral profiles, object color may differ between the images. Please zoom in on the PDF for image details.

(a) Fusion using SAD (b) Fusion using SSD (c) Fusion using MI (d) Fusion using GNCC (e) Fusion using CCNG (f) Bayer RGB image

Fig. 8. Depth estimation for RGB fusion: Traditional stereo matching methods such as (a) the sum-of-absolute differences (SAD) and (b) SSD produce
inaccurate depth maps (top row) which lead to color artifacts in the fused color image (bottom row). Cross-channel methods: (c) mutual information, (d)
generalized NCC, and (e) our normalized gradient algorithm yield better depth estimates, though mutual information is inferior to GNCC and CCNG. A color
image captured with a Bayer mosaic is presented in (f) for comparison. The color image outsets exhibit noticeable artifacts in (a), (b), and (c).

is fixed at 3dB. The camera array, Fig. 7(a), captures four

channels as shown in Fig. 7(b). Due to the wide baseline of the

cameras, significant parallax is introduced and a color image

cannot be recovered by simply fusing the red, green, and blue

channels into a single image (Fig. 7(c)). Instead, a depth map

is computed using our proposed algorithm, Fig. 7(d), and the

views are aligned using this depth map.

Comparison With State of the Art: Accurate depth maps

are a crucial component for recovering a color image using

our GAC; we compare the performance of our CCNG algo-

rithm with stereo matching algorithms in Fig. 8. Traditional

intensity-based stereo matching such as (a) sum-of-absolute

differences (SAD) and (b) SSD produce inaccurate depth

maps and the corresponding color images are unappealing.

Algorithms designed for finding cross-channel correspondence

perform much better than intensity-based metrics. Mutual

information (c) produces a depth map of decent quality,

though errors persist into the final color image. Both (d)

generalized NCC and (e) our CCNG metric yield high-quality

depth maps. An image captured with a conventional Bayer

pattern is included in Fig. 8(f) for comparison. Overall, our

method produces RGB images that are comparable in quality

to conventional color cameras which employ a Bayer pattern

as shown in detail in Fig. 7(e) and (f).

Low Light Imaging: Demosaicing artifacts are not the only

disadvantage of using a traditional color cameras. Traditional

cameras have a global exposure, even though light throughput

in individual color channels is not uniform. In low light

environments, this necessitates larger analog gains in channels

with low light throughput which amplifies image noise. Using

the proposed GAC array, the greater light throughput of the Y

effectively reduces image noise.

In Fig. 9, we consider a typical low light imaging scenario;

a diffuse incandescent light source is used to illuminate an

indoor scene. All of the cameras have an exposure duration of

125ms, a (generous) limit of a photographer’s ability to take

images free of motion blur using a hand-held camera. Gain

levels for each channel are set independently, the Y channel

has the lowest gain of 8dB while the gain of red (11dB), green

(13dB) and blue (15dB) channels is significantly higher. The

color camera used for comparison requires a global value for

the analog gain which is set to 13dB in this experiment. Our

camera array records an image with far less noise (Fig. 9(a))

than the color camera (Fig. 9(b)). Notice that fine details

around the eyes are retained by the GAC array while the noise

in the Bayer image obliterates nearly all detail around the eye.

Fine edge structure is also preserved using the GAC array as

shown in the outset of the ball cap.
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(a) RGB image from GAC array (b) Noisy Bayer RGB image

Fig. 9. RGB fusion for improved low-light imaging: By allowing one
camera to remain unfiltered in the GAC array, higher light throughput is
achieved which improves image quality in low-light environments. Exposure
durations were fixed at 125ms for all cameras. (a) The image captured with
the GAC. The light throughput of the Y channel greatly reduces noise in the
image compared to (b) traditional color image capture using a Bayer mosaic.
The image from the GAC array retains fine image detail around the dog’s
eyes which is lost in the Bayer image on the right.

(a) Bayer RGB image (b) Enhanced image from GAC array

Fig. 11. NIR fusion for face smoothing: Near-infrared light penetrates
deeper into skin than visible light. The resulting subsurface scattering ef-
fectively smooths away surface blemishes. Combining NIR information with
RGB images allows for “natural” image retouching for human skin. (a) A
color image captured with a Bayer CFA and (b) the NIR enhanced image
recorded using our GAC array. Notice the removal or softening of freckles
and blemishes.

Post-capture Refocusing: A recent trend in consumer

imaging is to coarsely sample the light-field of a scene which

allows for digital refocusing after capturing an image.Current

light-field cameras capture images with low spatial resolution

and must super resolve a high resolution image. Our GAC

array enables post-capture refocusing on color images with

spatial resolution equal to that of the cameras in the array.

Recovered RGB images, the resulting depth map, and

refocused images for two scenes are shown in Fig. 10. The

scenes shown in Fig. 10(a) were captured with an apertures of

f/4. Using the depth maps the in-focus images were digitally

refocused using a synthetic aperture of f/1 to create the

images in Fig. 10(b)-(d). The refocused images show the effect

of changing the focal plane from near, to middle, to far focus

in each of the scenes. Please view the image digitally and

zoom in to see details.

VI. APPLICATION II: SKIN PERFUSION IMAGING

The flexibility of GAC arrays allows additional channels

to be incorporated into the array by simply adding additional

cameras. In this way GAC arrays can be leveraged to augment

RGB color images with near infrared (NIR) information. NIR

(a) Bayer RGB image

(b) Enhanced RGB image from GAC array

Fig. 12. NIR fusion for vein viewing: By adjusting the weight of the NIR
channel, an effective vein viewing system can be devised. (a) Vasculature can
be difficult to see with unaided traditional RGB cameras. (b) With enhanced
RGB+NIR images from our GAC array, veins near the surface of the skin are
readily visible.

light penetrates deeper into human skin than light in the visible

spectrum [22], which in turn can be used to naturally retouch

color images by smoothing blemishes or to help medical

professionals easily see veins in the arm. By adding a fifth

monochrome camera to the GAC array described in Sec. V, the

R, G, B, Y, and NIR channels can be captured simultaneously.

An IR pass filter is affixed to the lens of the fifth camera.

Following image capture and alignment, a further processing

step is performed before generating the final RGB composite

image.

We follow the technique of Susstrunk et al. [22], to in-

corporate NIR information into the Y channel via bilateral

filtering. The bilateral filter [69] separates an image into

its base and detail components. The two components may

loosely be considered to represent localized low- and high-

frequency content, respectively. Using the fast bilateral filter

approximation suggested by Paris and Durand [70], the Y

and NIR channels are decomposed into their base and detail

representations. Some, or all, of the detail of the Y channel is

replaced with the detail in the NIR image using a weighting

parameter α,

Yfused = Ybase + ((1− α)Ydetail + αNIRdetail) . (9)

Following the fusion of the Y and NIR channels, the chromi-

nance from the R, G, and B channels are used to recover the

composite color image as before.

Natural Retouching for Portraiture: Imperfections in the

skin on the face, such as freckles, blemishes, and wrinkles, are

less noticeable when viewed in NIR. Using the five element

GAC array, NIR information is fused with the Y channel to

smooth facial imperfections.

We show the effects of this “natural” image retouching in

Fig. 11. Shown in Fig. 11 is (a) an image captured with a con-

ventional Bayer pattern and (b) an enhanced image captured

with the GAC array (α = 0.75). Many of the undesirable

surface skin features have been removed and strong blemishes

have been softened significantly.

Vein Viewing: In addition to applications in portrait pho-

tography, the deeper skin penetration of NIR light can be used

in medical applications. For example, veins near the surface
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o Reference view Direct overlap

Depth map GAC array fusion In focus In focus In focus

E
x

p
o Reference view Direct overlap

Depth map GAC array fusion

(a) GAC for RGB fusion I/O

In focus

(b) Near focus

In focus

(c) Mid focus

In focus

(d) Far focus

Fig. 10. GAC array RGB fusion and post-capture refocusing: (a) The depth map computed for RGB fusion may be used to digitally refocus the image
post-capture. (b)-(d) The scenes are refocused with a synthetic aperture of f/1 and focal plane positioned in the near-, middle-, and background. Zoomed-in
outsets of objects in the near- (red), middle- (green), and background (orange) show the effect of changing the focal plane position. Please view digitally.

of the arm may be difficult to see in the visible spectrum but

are prominent in NIR. Using the GAC array it is possible to

enhance RGB images to make veins more prominent while

retaining color information to provide familiar visual cues to

the user. An example of enhanced vein viewing is shown in

Fig. 12. The top image is taken with a conventional RGB

camera and the bottom image, captured with our GAC array,

has additional NIR information (α = 1). Veins are more

pronounced and the intricate pathways are easily seen in the

image acquired with the GAC array.

VII. APPLICATION III: HYPERSPECTRAL IMAGING

Commercial hyperspectral cameras are able to achieve high

spectral resolution by trading off spatial or temporal resolution.

Furthermore, they suffer from poor light throughput which

requires long exposure times and high analog gain which leads

to low SNR in individual spectral bands. We demonstrate how

a GAC array can be used to recover hyperspectral video with

10nm resolution, high light throughput, and no loss of spatial

resolution. This represents a 10x improvement in spectral

resolution over RGB cameras and at a fraction of the cost

of currently available HS cameras.

A straight-forward GAC implementation would be to place

narrow-band filters in front of each camera element. However,

the use of narrow-band filters results in a low light throughput.

We propose a multiplexing strategy, similar to [71] and [72]

to improve SNR. We demonstrate a proof-of-concept system

using the 5 × 5 ProFUSION color camera array from Point

Grey as the imaging platform and Roscolux broadband filters.

21 cameras were selected to be in the GAC array (4 were

unused due to quality issues). A Headwall Photonics Micro-

Hyperspec VNIR imaging spectrometer was used to capture

450 525 600 675 450 525 600 675 450 525 600 675

450 525 600 675 450 525 600 675

Reconstructed

Ground Truth

Fig. 13. Recovering hyperspectral measurements using calibration charts:
Spectral profiles of a color calibration target are recovered using a dictionary
of known hyperspectral measurements. Ground truth data (dashed, black plots)
was captured with a HS camera and the recovered spectrum (solid, blue plots)
using the proposed GAC. The average SNR of the reconstructed curves is 23.7
dB. Ground truth was captured using Headwall Photonics Micro-Hyperspec
VNIR imaging spectrometer.

spectral measurements that are then used as ground truth

for evaluating the performance of our GAC hyperspectral

estimates in Fig. 13, Fig. 14, and Fig. 16.

Recovering Hyperspectral Data: We use a set of broad-

band filters, each with high transmittance, and whose trans-

mission power for a particular discrete wavelength λ is Fc(λ)
where c is the camera index (since each camera has only one

filter). Post capture, we demultiplex the intensities to produce

the scene spectral reflectance R(λ).

If the spectral response of the Bayer pattern is Bf (λ), where

f is the index of the red, green, and blue filters, then the

intensity measurement I of this scene point at camera c and
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(a) GAC array reference view

450 700 450 700 450 700

450 700 450 700 450 700

Reconstructed Ground Truth

(b) Recovered spectral profiles

Fig. 14. Hyperspectral recovery for real scenes: Hyperspectral measure-
ments computed from the aligned image stack using 82 known spectral
profiles. The average SNR of the reconstruction is 26.7 dB.

for color channel f is:

Icf =
∑

λ

Bf (λ)Fc(λ)J(λ)R(λ), (10)

where J is the (unknown) spectral response of the illumi-

nation. By demosaicing the raw Bayer image data, we can

obtain all three color channels at every pixel. Therefore, if

there are C = 21 cameras and 3 color channels we get a total

of M = 3C = 63 measurements at each scene point.

If we combine the known filter and Bayer spectral responses

into an effective camera filter Fm (m = 1, . . . ,M ) and include

the illumination J into the reflectance R, summing over the

S discrete spectral bins gives,

Im =

S∑

i=1

Fm(λi)R(λi), (11)

which in vector notation is I = FR. We propose a calibration

step that allows us to recover the unknown spectral reflectance

of a scene point. Our method does not require recovery of the

M × S mixing matrix F.

We first take images of a color chart and capture an M×N
matrix I, where N is the number of color chart squares, such

that I = FR. True spectral profiles are recorded using the

Headwall HS camera and stored in a S ×N matrix T. Given

a length-M vector of measurements X for some scene point

obtained by the imaging process of Eq. (11), we learn a sparse

set of coefficients ω that reconstruct X using I as a dictionary,

arg min
ω

‖X − Iω‖ where ‖ω‖0 ≤ ∆, (12)

where ∆ is a threshold on sparsity. Assuming linearity in the

camera responses, the weighting coefficients ω can be used to

reconstruct the unknown reflectance of X , R̂, using T ,

R̂ = Tω. (13)

Therefore, given a calibration color-chart image, taken under

the same unknown illumination J as the scene, and given the

measurements X at a scene point, we find the sparse weights

ω to reconstruct the measurements X from the multiplexed

color chart image data I. We use the same weights directly

on the known spectral responses of the color chart to recover

the spectral response R̂ of the scene point. We choose the

filters from a Roscolux booklet using a greedy algorithm to

minimize the condition number of F. To begin, we select the

(a) ProFUSION array (b) Broadband filters (c) Captured images

(d) Avg. input images (e) Depth map (f) Avg. aligned images

Fig. 15. Multiplexed hyperspectral imaging: (a) A 5× 5 camera array is
outfit with (b) broadband optical filters. (c) 21 cameras record multiplexed
images. (d) Direct fusion of the images leads to misaligned images, so (e)
a depth map is found using the CCNG cost. (f) The average of the aligned
images shows the quality of the depth map.

single filter which yields the smallest condition number and

iteratively choose additional filters in this manner until we

have the 21 filters that are used in the array.

Static Scene Recovery: We demonstrate our method first

with a static calibration scene (Fig. 13) consisting of a Gretag

Macbeth digital SG color chart with 140 squares and 28
spectra levels. Repetitive color samples and the 24 classic color

checkers are not considered, leaving N = 58 unique color

samples. Limited energy in the blue end of the visible spectrum

restricted accurate spectral measurements to the range 430nm-

700nm. We then took a second image of the classic color

checker with 24 color swatches and recovered the squares’ true

spectra using Eq. (12) and Eq. (13). Fig. 13 shows the real and

recovered spectra for a selection of the squares. The spectral

response of each square was recovered with an average SNR

of 23.7dB.

In the second experiment, we imaged the static scene shown

in Fig. 14. The digital SG color checker is again used for

calibration, and the recovered spectral response of selected

scene points is shown in Fig. 14. Fig. 15 gives an overview of

the imaging process and shows the need for image alignment.

Hyperspectral Video: An advantage of hyperspectral

GACs is their ability to capture video data. Using the same

procedure as Fig. 14, 40 frames of a dynamic scene were

captured at 15 fps. In the video, two arms move throughout

the FOV of the array. Camera elements within the array are

synchronized and share the same exposure and gain settings.

5 frames of the video and the spectral reconstructions for two

manually specified scene points are shown in Fig. 16.

Reconstruction Quality: In addition to providing color

checker calibration data, the Micro-Hyperspec imager is used

to provide ground truth spectral measurements. Ground truth

spectral data acquisition took 10 seconds per scene, precluding

the use of the Micro-Hyperspec for video capture. Using our

GAC we were able to capture the scene in 30ms and recovered

the spectral profiles with an average reconstruction SNR of

25.7dB for the scene points in Fig. 14 and 27.8dB for the
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Frame 1 Frame 10 Frame 25

Frame 35 450 525 600 675

Light Skin

Dark Skin

Frame 39

Fig. 16. Hyperspectral Video using a GAC: Average recon SNR is 27.8dB
relative to ground truth collected with static scene elements. Aside from the
difference in magnitude, the light skin patches have a peak at 630nm, while
the dark skin patches peak at 650nm.

(a) HS Reference view (b) Depth from SAD (c) Depth from SSD

(d) Depth from MI (e) Depth from GNCC (f) Depth from NG (ours)

Fig. 17. Comparison of Depth Estimation on Multispectral Data: A
depth map for the scene in (a) is computed using (b) SAD, (c) SSD, (d)
MI, (e) GNCC, and (f) our NG cost. As with RGBY fusion (Fig. 8) the
intensity-based metrics and mutual information (b)-(d) yield inaccurate depth
maps. Generalized NCC (e) has spurious errors in the depth map, even within
textured regions. The proposed method (f) offers superior depth estimates.

scene points in the video. Ground truth data for the video was

collected with both hands resting stationary on the table.

Comparison With State of the Art Stereo Matching:

Fig. 17 compares the performance of various stereo-matching

algorithms. As with matching across color channels, the inten-

sity based metrics and mutual information (b)-(d) yield poor

depth estimates. Generalized NCC also returns a noisy depth

map while our proposed CCNG algorithm is able to return a

high quality depth map.

VIII. CONCLUSION

In this paper we presented a framework for using general-

ized assorted cameras and demonstrated examples of GAC

arrays used to capture color images with four cameras,

augment RGB images with NIR information, and capture

multiplexed hyperspectral video. Robust cross-channel point

correspondence using a normalized gradient cost allows all

(a) GAC array image (b) Recovered depth (c) Bayer image

Fig. 18. Failure for specular materials: Like many stereo correspondence
algorithms, our proposed method assumes scene elements are diffuse. When
this assumption is violated, the depth map is resolved inaccurately, leading
to garish image artifacts as shown in (a) the recovered image and (b) depth
map. (c) An image captured with a Bayer CFA is provided for comparison.

of the camera views to be warped to an arbitrary viewpoint

within the camera array. Moreover, the simultaneous capture

of scene information allows for imaging of dynamic scenes

and video capture.

Advantages: Generalized assorted camera arrays offer the

following advantages compared to traditional imaging sys-

tems: (1) Adaptability: Cameras in the array can be controlled

independently or as a whole to adapt to novel lighting and

scene changes without compromising imaging quality. (2)

Flexibility: By changing the filter arrangement in front of

each camera it is easy to configure the camera array to fit

application-specific imaging domains. (3) Increased resolution

and SNR for hyperspectral imaging: Simultaneously capturing

many multiplexed views with the camera array allows for

greater temporal resolution in recorded images and video as

well as higher light throughput.

Limitations: Camera arrays are not suitable for all imaging

situations. GAC arrays will suffer from many of the same lim-

itations as stereo camera systems. In addition to well-known

problems with accurate depth estimation for thin structures at

depth boundaries, GAC arrays face two main limitations. The

first is proximity, and objects that are close to the sensors will

not be present in the FOV of all cameras. Therefore, there

exists a minimum operating distance which is a function of

the camera array baseline. Adding more elements to the array

(or using larger cameras) increases the minimum operating

distance. The second limitation is common among stereo

matching algorithms, namely that point correspondences for

scenes with specularities and refractive media are not faithfully

recovered as seen in Fig. 18. The figure shows significant

errors in the recovered color image when compared with an

image from a conventional color camera. Outsets highlight a

few failure cases due to specularity on the glass bottle and

refractions due to water and glass.
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