
PTYCHNET : CNN BASED FOURIER PTYCHOGRAPHY

Armin Kappeler1, Sushobhan Ghosh2, Jason Holloway3, Oliver Cossairt2, Aggelos Katsaggelos2

1Yahoo Inc. 2Northwestern University 3Columbia University

ABSTRACT

Fourier ptychography is an imaging technique that overcomes
the diffraction limit of conventional cameras with applications
in microscopy and long range imaging. Diffraction blur causes
resolution loss in both cases. In Fourier ptychography, a co-
herent light source illuminates an object, which is then im-
aged from multiple viewpoints. The reconstruction of the ob-
ject from these set of recordings can be obtained by an itera-
tive phase retrieval algorithm. However, the retrieval process is
slow and does not work well under certain conditions. In this
paper, we propose a new reconstruction algorithm that is based
on convolutional neural networks and demonstrate its advan-
tages in terms of speed and performance.

Index Terms— Fourier ptychography, Convolutional Neu-
ral Network, CNN

1. INTRODUCTION

Imaging using traditional optical systems is constrained by the
space-bandwidth product (SBP) [1], which describes the trade-
off between high resolution and large field of view. Fourier
ptychography (FP) is a coherent imaging technique which aims
to overcome the SBP limitation by capturing a sequence of
SBP limited images and computationally combining them to
recover a high resolution, large FOV image and thus overcom-
ing the SBP barrier. Fourier ptychography has been applied to
wide field, high resolution microscopy [2], quantitative phase
imaging [3], adaptive Fourier ptychography imaging [4], long
distance, sub-diffraction imaging [5] and other applications.
In Fourier ptychography, a high resolution image is recovered
from a set of frequency limited low resolution images of an ob-
ject illuminated with a coherent light source. To achieve this,
an iterative phase retrieval algorithm [6] recovers the phase in-
formation that is lost in the incoherent imaging process. A de-
tailed overview of different phase reconstruction techniques is
provided in [7, 8].

Iterative phase retrieval algorithms perform well if the set
of low resolution images have overlapping frequency bands in
the Fourier domain, but the reconstruction quality quickly de-
grades as the overlap between the Fourier patches decreases [9].
The requirement of overlap between neighboring patches re-
quires sequential scanning to obtain all the low resolution im-
ages and provides a major barrier to single shot ptychography
[10]. Reducing or eliminating the overlap-requirement would
lead to a much faster acquisition time. In this paper, we fo-
cus on the algorithm for retrieving the high resolution image.
In place of a phase retrieval algorithm, we propose a Convolu-
tional Neural Network (CNN) based solution (PtychNet), that

Coherent
source

Transmissive
object

Lens
(aperture)

Image 
sensor

Fraunhofer diffraction

ψ(x, y) ψ̂(u, v) A(u, v) I(x, y)

ψ(x, y) ψ̂(u, v) A(u, v) I(x, y)
ψ(x, y) ψ̂(u, v) A(u, v) I(x, y)

ψ(x, y) ψ̂(u, v) A(u, v) I(x, y)

Fig. 1: Example setup for Fourier ptychography (FP). Coherent
light diffracts through a translucent medium into the far-field. A
lens samples a portion of the Fourier domain which is recorded
as intensity images at the sensor. See Section 2.1 for details.

directly restores the image in the spatial domain without explic-
itly recovering the phase information. CNNs have been proven
to be very effective for image classification [11–13], and have
become increasingly popular with other image processing tasks
such as super-resolution [14–16], image segmentation [17], etc.

We show that PtychNet obtains better reconstruction results
in considerably less time if the low resolution images have no
overlapping frequency bands. When the low-resolution images
contain overlapping support in the frequency domain, we can
use PtychNet to significantly reduce the computation time of
an iterative phase retrieval algorithm.

The remainder of the paper is organized as follows. In Sec-
tion 2 we briefly introduce Fourier ptychography, in Section 3
we explain our proposed framework PtychNet. Section 4 con-
tains our results and experimental evaluation and Section 5 con-
cludes the paper.

2. FOURIER PTYCHOGRAPHY

2.1. Image Formation Model

Consider the generalized imaging setup shown in Figure 1. A
monochromatic source with wavelength λ illuminates a trans-
parent object. Let the 2D complex field that emanates from
the object be denoted as ψ(x, y). If a camera is placed in the
far-field and satisfies the Fraunhofer approximation, the field
incident on the lens is a scaled Fourier transform of the scene,

ψ̂(u, v) = F 1
λz
{ψ(x, y)} ,

where λ is the wavelength of illumination, z is the distance be-
tween object and lens, ψ̂(u, v) is the field at the lens and (u, v)



Fig. 2: Example of image acquisition in Fourier ptychogra-
phy. N ×N images with limited, overlapping frequency bands
are captured to recover one high resolution image. Image used
from [5] with permission.

are coordinates in the frequency domain. The frequency spec-
trum is limited by the finite aperture of the lens, A(u− cu, v−
cv), where (cu, cv) is the center of the lens. The lens focuses
the light on the image plane–which also satisfies the Fraun-
hofer approximation–and the intensity of the resulting field is
recorded by the sensor. The measured intensity is thus given by

I(x, y, cu, cv) ∝
∣∣∣F {ψ̂(u, v)�A(u− cu, v − cv)}∣∣∣2 (1)

where � signifies an element-wise multiplication. For simplic-
ity, we will drop the scaling factor of the Fraunhofer approxi-
mation in this paper, though it may be accounted for after image
reconstruction if desired.

To emulate capturing the scene with a larger lens, N × N
images are captured by translating the lens, (cu, cv), to cover a
larger portion of the Fourier spectrum. An example of the data
acquisition process is shown in Figure 2.

2.2. Iterative Error Reduction Algorithm

Recovering the complex field ψ̂(u, v) from the set of measured
intensity images Ii, i = 1, . . . , N , is a non-convex optimiza-
tion problem. That is, recovering ψ̂(u, v) reduces to solving
the optimization problem:

ψ̂∗ = argminψ̂
∑
i

∥∥∥ψi −F {Ai � ψ̂}∥∥∥
2

s.t. |ψi|2 = Ii,

where the spatial arguments have been omitted for compact-
ness. For an ideal lens with radius r, light within the sup-
port is passed uniformly and all other light is rejected, A =
||(u− cu, v − cv)||2 ≤ r.
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Fig. 3: Block diagram for IERA used in [5], modified with
permission.

Conventional methods estimate ψ̂(u, v) using variations on
iterative error reduction algorithms (IERAs) that enforce mag-
nitude constraints in the spatial domain and support constraints
in the Fourier domain [6, 7]. Figure 3 shows the block diagram
of the IERA used in [5].

3. PTYCHNET

We propose a learning-based algorithm of recovering the high
resolution image based on Convolutional Neural Networks. A
high-level representation of the network structure is shown in
Figure 4. Our network learns a non-linear mapping from the
intensity images Ii to the original input light field ψ. Both,
input Ii and output ψ are in the spatial domain. The inverse fil-
ters of the band-passes applied to the original light field can be
approximated with convolutional filters, and the reconstruction
process is locally independent which makes this a well-suited
problem for a CNN. The input data of the CNN consists of the
concatenation of all the intensity images Ii to a 3D-cube with
dimensionsw×h×N2 wherew and h are the width and height
of the image and N2 are the number of sampled images. The
output of the CNN is the amplitude of the desired high resolu-
tion field ψ.

3.1. Architecture

The proposed CNN is based on the architecture used in [14]. It
consists of three convolutional layers. The two hidden layers
H1 and H2 are each followed by a ReLU activation function.
The first layer consists of 64 kernels with a kernel size of 9×9.
The second layer has 32 kernels with a size of 5 × 5 and the
output layer has a kernel size of 5×5. The output layer has only
one kernel that will directly produce the reconstructed image in
the spatial domain. The weights are initialized with random
Gaussian distributed values with a standard deviation of 0.001.
We use the Euclidean distance as our loss function1.

3.2. Training Procedure

Our algorithm is implemented with the Caffe framework [18]
and trained using 91 publicly available images from Set91 [19].

1Experiments with TV-minimization as loss function did not lead to
any improvements in PSNR



Fig. 4: PtychNet overview, three layer CNN with two hidden
layers. ReLU activation functions follow the hidden layers.

The images are converted to grayscale and resized tow×h pix-
els, where w = h = 512 pixels. These images represent our
ground truth data ψ. For each training image, equation (1) is
used to generateN2, N = 7 images with low spatial resolution
Ii. The observed images are concatenated into a 3D-cube of
size w×h×N2. Using all 91 datacubes, approximately 15000
48 × 48 × 49 patches were extracted to train the CNN. Note
that since both the input and the output image of the CNN are
in the spatial domain, our reconstruction algorithm is spatially
invariant and therefore we can divide the input and output data
into patches for parallel processing. To avoid border effects in-
troduced by zero-padding for the convolutional layers, only the
32 × 32 center pixels of a training patch are used to calculate
the Euclidean loss. We created two separate training datasets of
input images with overlapping and non-overlapping frequency
bands. We achieve better performance for the non-overlapping
dataset by subtracting the center input image (which contains
the DC term) from the reconstructed output image. This ap-
proach is similar to the idea of residual networks [13]. Our
networks were trained for 200,000 iterations with a batch size
of 256.

4. EXPERIMENTAL RESULTS

In this section, we tested the effectiveness of our CNN by com-
paring it against the IERA algorithm proposed in [5]. We test
our algorithm on using a resolution chart (resChart) and Lena
image in addition to the Set5 images from [19]. We use peak-
signal-to-noise-ratio (PSNR) and structural similarity (SSIM)
as our performance metrics. The IERA algorithm was eval-
uated after 100 iterations which is well after the results have
plateaued.

Two testing configurations are considered: the standard
61% overlap used in FP, and 0% overlap which corresponds
to a densely packed lens array. Overlap defined as the per-
centage of the area shared between adjacent input images in
the frequency domain (see Figure 2b). The baseline for im-
age performance is the center image (image at position 0, 0 in
Figure 2d), which corresponds to the lowpass filtered original
image.

4.1. Without overlap

Table 1 shows the PSNR (dB) and SSIM results for the non-
overlapping case. Results are shown for the center image,

Table 1: PSNR and SSIM without overlap

Image Metric Center IERA PtychNet

lena PSNR 25.11 24.68 25.82
SSIM 0.6828 0.6488 0.7146

resChart PSNR 14.41 12.92 15.05
SSIM 0.1981 0.1357 0.2536

baby PSNR 25.97 25.46 26.50
SSIM 0.6836 0.6488 0.7030

bird PSNR 28.49 28.50 29.70
SSIM 0.8175 0.8068 0.8537

butterfly PSNR 21.47 21.57 23.24
SSIM 0.6201 0.5866 0.7258

head PSNR 30.48 30.01 30.67
SSIM 0.7295 0.6964 0.7410

woman PSNR 24.93 24.82 25.83
SSIM 0.7611 0.7431 0.8106

IERA and PtychNet. Figure 5 shows the original image, cap-
tured center image, and the reconstructed images using IERA
and PtychNet for Lena and the resolution chart. In both cases
PtychNet outperforms IERA and improves on the baseline;
improvements over IERA are between 0.6 and 2.1 dB.

4.2. With overlap

The IERA and PtychNet images for 61% overlap are shown in
Figure 6. Note that the input and center images are the same
as Figure 5. When operating with sufficient overlap the IERA
reconstructions are superior to PtychNet, which is particularly
evident in the resolution chart. Interestingly, the gap in per-
formance for the resolution chart (IERA: 18.28 dB, PtychNet:
18.04 dB) is much smaller than for Lena (IERA: 31.52 dB, Pty-
chNet: 29.53 dB). In images from Set5, IERA outperforms Pty-
chNet by an average of 2.4 dB (IERA: 35.02 dB, PtychNet:
32.61 dB).

Despite the lower performance, PtychNet has significantly
lower runtimes than IERA. For example, the runtime for a
512× 512 pixel image for IERA with 100 iterations is about 1
minute, while PtychNet completes in 0.5 seconds. The IERA
algorithm requires an initial guess, which is taken as the mean
image (averaged over the 49 input images). Alternatively, the
output PtychNet can be used to initialize IERA which leads to
rapid convergence of the algorithm. The output of PtychNet is
itself a good reconstruction of the original image so few addi-
tional iterations are needed. In Figure 7 we show the average
PSNR versus iteration graph for Set5 and Lena and the reso-
lution chart. We test three initialization schemes: the output
of PtychNet, the center image, and the mean image. In our
tests, IERA with mean initialization requires 30 iterations to
converge, while using the output of PtychNet for initialization
only requires 6 iterations to converge to the same PSNR. For
all seven images, the final PSNRs are within 0.02 dB regardless
of initialization but PtychNet improves convergence time by a
factor of five.



High resolution image Center image: 25.11 dB IERA: 24.68 dB PtychNet: 25.82 dB

High resolution image Center image: 14.41 dB IERA: 12.92 dB PtychNet: 15.05 dB

Fig. 5: Results for Lena and resolution chart with 0% overlap

IERA: 31.52 dB PtychNet: 29.53 dB

IERA: 18.28 dB PtychNet: 18.04 dB

Fig. 6: Results for Lena and resolution chart with 61% overlap

5. CONCLUSION

We introduced a recovery algorithm for Fourier ptychography
based on deep learning. To the best of our knowledge, there is
no pre-existing work on CNN based Fourier ptychography al-
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Fig. 7: IERA with different initializations. Using PtychNet for
initialization yields faster convergence compared to mean and
center image initializations.

gorithms. We show that for non-overlapped Fourier sampling,
PtychNet performed significantly better than an existing FP al-
gorithm, in both speed and quality. Furthermore, PtychNet can
be used as the initialization in conventional oversampled FP to
improve convergenence times five-fold.
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