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• Scene understanding and object recognition is important in 
many computer vision applications 
– Robot navigation, remote sensing, medical imaging, etc. 

 

• Classification performance improves if hyperspectral images 
are used 
– At the expense of time, convenience, and money 

 

• Goal: Achieve similar accuracy using far fewer measurements 

Scene Recognition and Goal 
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Hyperspectral Images of Natural Scenes 



Object Labeling 
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• Image classification is a well-studied research topic [1] 

 

• We adapt a commonly used classifier 
– Not interested in designing a new classifier 

– Trying to show the value of the acquisition method, not classifier 

 

• We use a simple SVM classifier with a radial basis function 
kernel 
– Non-linear mapping improves results for low-dimensional data 

– Only two degrees of freedom (𝐶, 𝛾) 

 

Object Classification using SVM 

[1] Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving 
classification performance. International journal of Remote sensing, 28(5), 823-870. 



RGB & Hyperspectral Classification 
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• Adding spectral measurements improves classification 
performance 
– RGB (3 channels): 71% 

– Hyperspectral (325 channels):  87.7% 

 

• How much benefit is one additional channel over RGB? Three 
additional channels? 

 

• Acquisition schemes 
– RGB + Near-infrared 

– RGB + 3 narrowband channels 

– 6 narrowband channels 

– 6 common optical filters 

Reducing Spectral Measurements 



Channel Selection 
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Classification Accuracy vs # of bands 
• Accuracy of 325 

bands: 87.7% 

 

• Accuracy of 6 
uniformly distributed 
bands: 84.9% 

– 97% as accurate 

– 50x fewer bands 
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RGB+NIR 

• Three color filters 

• One broadband NIR 
channel 

 

• Classification accuracy 

– 79.7% 
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RGB+3 Narrowband Channels 

• Narrowband channels 
picked using greedy 
algorithm 

 

• Classification accuracy 

– 84.9% 
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6 Narrowband Channels 

• Channels picked using 
greedy algorithm as 
before 

 

• Classification accuracy 

– 85.1% 
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6 Optical Filters 

• Inspired by available 
shortpass, longpass, 
bandpass, band reject 
filters 

– Placed every 25nm, 
bandwidths of 25, 50, 
75nm (where applicable) 

 

• Classification accuracy 

– 86.4% 
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• These preliminary results merit further investigation using a 
diverse dataset of natural scenes (captured with a 
hyperspectral imager) 

 

• If the results hold for the full dataset: 
– Investigate optimal filter selection 

– Quantify the tradeoff between accuracy and number of channels 

 

Future Work 


