Classification of natural scenes via multispectral Imaging Jason Holloway*, Tanu Priya[†], Ashok Veeraraghavan*, Saurabh Prasad[†] *Rice ECE [†]University of Houston ECE

Scene Recognition and Goal

- Two week project with the University of Houston
 - Submitted to ICIP
- Scene understanding and object recognition is important in many computer vision applications
 - Robot navigation, remote sensing, medical imaging, etc.
- Classification performance improves if hyperspectral images are used
 - At the expense of time, convenience, and money
- Goal: Achieve similar accuracy using far fewer measurements

Hyperspectral Images of Natural Scenes

Hyperspectral data captured using Headwall Photonics hyperspectral imager

Image Resolution: $1004 \times 2500 \times 325$

Rendered in RGB using Flea3 sensor Response

Hyperspectral Images of Natural Scenes

Hyperspectral data captured using Headwall Photonics hyperspectral imager

Image Resolution: $1004 \times 2500 \times 325$

Rendered in RGB using Flea3 sensor Response

Object Labeling

Objects of Interest Vegetation Metal Concrete Pathway Skin Fabric Rubber

Image Resolution: 1004 × 2500 × 325 Rendered in RGB using Flea3 sensor Response

Object Labeling

Objects of Interest

Vegetation Metal Concrete Pathway Skin Fabric Rubber

RICE[®] Image Resolution: 1004 × 2500 × 325 Rendered in RGB using Flea3 sensor Response

Object Classification using SVM

- Image classification is a well-studied research topic ^[1]
- We adapt a commonly used classifier
 - Not interested in designing a new classifier
 - Trying to show the value of the acquisition method, not classifier
- We use a simple SVM classifier with a radial basis function kernel
 - Non-linear mapping improves results for low-dimensional data
 - Only two degrees of freedom (C, γ)

[1] Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. *International journal of Remote sensing*, *28*(5), 823-870.

RGB & Hyperspectral Classification

Training Scene 90.0 80.0 70.0 60.0

Testing Scene

Reducing Spectral Measurements

- Adding spectral measurements improves classification performance
 - RGB (3 channels): 71%
 - Hyperspectral (325 channels): 87.7%
- How much benefit is one additional channel over RGB? Three additional channels?
- Acquisition schemes
 - RGB + Near-infrared
 - RGB + 3 narrowband channels
 - 6 narrowband channels
 - 6 common optical filters

Channel Selection

- Accuracy of 325 bands: 87.7%
- Accuracy of 6 uniformly distributed bands: 84.9%
 - 97% as accurate
 - 50x fewer bands

Channel Selection

- Accuracy of 325 bands: 87.7%
- Accuracy of 6 uniformly distributed bands: 84.9%
 - 97% as accurate
 - 50x fewer bands

RGB+NIR

400nn

- Three color filters
- One broadband NIR channel
- Classification accuracy
 <u>– 79.7%</u>

RGB+3 Narrowband Channels

- Narrowband channels picked using greedy algorithm
- Classification accuracy
 84.9%

Narrowband placement

400nm

6 Narrowband Channels

- Channels picked using greedy algorithm as before
- Classification accuracy
 85.1%

400nm

6 Optical Filters

- Inspired by available shortpass, longpass, bandpass, band reject filters
 - Placed every 25nm, Solution
 bandwidths of 25, 50, T5nm (where applicable)
- Classification accuracy
 86.4%

400nm

Future Work

- These preliminary results merit further investigation using a diverse dataset of natural scenes (captured with a hyperspectral imager)
- If the results hold for the full dataset:
 - Investigate optimal filter selection
 - Quantify the tradeoff between accuracy and number of channels

