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ABSTRACT

A tenet of object classification is that accuracy improves with

an increasing number (and variety) of spectral channels avail-

able to the classifier. Hyperspectral images provide hundreds

of narrowband measurements over a wide spectral range, and

offer superior classification performance over color images.

However, hyperspectral data is highly redundant. In this pa-

per we suggest that only 6 measurements are needed to obtain

classification results comparable to those realized using hy-

perspectral data. We present classification results for a natural

scene using three imaging modalities: 1) using three broad-

band color filters (RGB) and three narrowband samples, 2)

using six narrowband samples, and 3) using six commonly

available optical filters. If these results hold for larger datasets

of natural images, recently proposed multispectral image sen-

sors [1, 2] can be used to offer material classification results

equal to that of hyperspectral data.

Index Terms— Natural Scene Classification, Hyperspec-

tral Imaging, Multispectral Imaging

1. INTRODUCTION

In recent years scene understanding and object classification

has received intensive attention as it benefits many practical

applications such as autonomous driving, robot vision and

content-based image retrieval. The input for many classi-

fication tasks are images taken using conventional cameras

containing three broadband spectral measurements (the red,

green, and blue channels of the image). RGB cameras are

bountiful, cheap, and easy to use; however, the coarse sam-

pling of the visible spectrum limits classification accuracy,

especially in the presence of metameric scene elements.

Hyperspectral imaging (HSI) systems, on the other hand,

record hundreds of measurements and provide fine spectral

resolution over a wide range of the electromagnetic spectrum.

HSI is able to capture material specific information which

greatly improves classification performance. The improved

performance comes at a cost. HSI camera systems require

specialized processing units, are expensive and bulky, have

long acquisition times, and suffer from a low signal-to-noise

ratio. Moreover, the spectral profile of elements in natural

scenes vary slowly such that neighboring narrowband spectral

measurements are highly correlated. This inherent spectral re-

dundancy suggests that far fewer measurements can be used

to produce classification fidelity approaching that of HSI.

Recent work in camera and sensor design has led to two

imaging systems which can capture a handful of co-located

spectral measurements. By manipulating vertical silicon

nanowires, [1] is able to create multi-layer image sensors

tuned to specific wavelengths while [2] extends the typical

Bayer filter found on color images to capture multispectral

images. A camera add-on proposed by [3] can be used to

increase spectral resolution for consumer cameras. These

systems increase spectral measurements on the order of ones,

far fewer than the hundreds capable with HSI. It is unclear

how much benefit such systems would pose for material

classification, or even which measurements should be taken.

In this paper we present the effectiveness of using six

channels in natural scene analysis tasks. In particular, we

compare the classification performance of using the entire hy-

perspectral data to a select set of 6 multispectral channels.

We evaluate our approach on 2 scenes with ground truth

labeling of 7 different material categories. We hope that these

results will motivate more comprehensive research into alter-

native imaging modalities for scene analysis.

1.1. Related Work

Two well-established techniques for improving upon color

image classification performance are to perform classification

using (1) joint measurements of RGB and side-band informa-

tion and (2) dense spectral sampling from HSI.

Augmenting the visible spectrum with a broadband near-

infrared channel has been shown to improve material clas-

sification [4], agricultural foodstuff discrimination [5], and

image segmentation tasks [6]. Multi- and hyperspectral im-

ages have been used extensively to improve the performance

of image segmentation and classification in specific applica-

tion areas such as remote sensing (see [7] for a survey of the

field), medical diagnosis and bioinformatics [8, 9], and mili-

tary surveillance [10]. A comprehensive overview of classifi-

cation using HSI is offered in [11].

Unfortunately, no such effort has been made to improve



classification of natural scenes using HSI data. Work by [12]

and [13] shows that natural scenes exhibit spectral profiles

which vary slowly and are inherently of a lower dimension

than the hundreds of samples captured in HSI data. We of-

fer a foundation for further exploration into using only a few

spectral measurements for natural scene classification.

2. HYPOTHESIS AND SOLUTION

We seek to test the following hypothesis: A few (say for ex-

ample 6) carefully selected spectral channels can be used to

achieve classification accuracy comparable to that of classi-

fication using HSI. We consider the following three imag-

ing scenarios, we first augment the three bands of a conven-

tional color camera with narrowband measurements, we se-

lect a subset of narrowband measurements captured in HSI,

and finally we use spectral channels inspired by available op-

tical filters.

Let the true spectral profile of every pixel p in the hyper-

spectral image be represented by H(p), a length–N column

vector where N is the number of spectral bands. We wish to

represent each pixel as a length–M vector, x(p), which max-

imizes discriminatory information between material classes.

Each entry in x(p) is a linear combination of the spectral mea-

surements in H(p)

x(p) = AH(p), (1)

where A is a positive M ×N matrix whose rows contain the

weights for each entry in x(p); the rows of A sum to 1.

Material classification is an exercise in labeling where a

labeling function ℓ(·) maps observed data to an object class

(x → Y ). The goal is to reduce error when assigning labels.

In particular, we seek to minimize the labeling problem

min
∑

s∈S

ℓ(x(s)) ↑ y(s), (2)

where S is the set of pixels to be classified, y(s) ∈ Y is the

true object class, and ↑ returns 1 if ℓ(x(s)) is not equal to

y(s).
To minimize (2) is to find the optimal set of weights A to

produce x. Substituting (1) into (2) gives

argmin
A

∑

s∈S

ℓ(AH(s)) ↑ y(s). (3)

Explicitly solving (3) is intractable, therefore we employ a

greedy selection algorithm [14] to find the rows of A sequen-

tially. That is, the first row of A is found which minimizes (3)

for M = 1. The second row is then computed by minimizing

(3) for M = 2 and by fixing the first row using the result from

the previous step. The procedure repeats until all M rows are

found.

Depending on the imaging scenario, further restrictions

are placed upon the rows of A. Each row of A correspond-

ing to a narrowband measurement is required to have a single

Fig. 1. Scenes used for testing: HSI was collected for the

two outdoor scenes shown above. Color images were gener-

ated using the spectral profile of the e2v EV76C560 camera

sensor to provide realistic measurements for broadband color

filters. Ground truth labeling of top scene was used to train

the classifier while the bottom scene was reserved for testing.

Gamma correction has been applied for display purposes.

non-zero entry. Weights for the RGB color filters are known a

priori and are fixed before searching for the remaining 3 nar-

rowband measurements. The weights for the common spec-

tral filters are also known a prioi which are then used to re-

strict the search space for each row of A.

In order to ensure consistent inputs to the labeling func-

tion we preprocess pixels prior to assigning a label. Each

pixel is normalized by dividing the value of each spectral sam-

ple by the sum of all spectral samples,

x(p) =
x(p)

N∑
i=1

xi(p)

(4)

where i is an index of the N spectral samples.

Hyperspectral images are spatially redundant as well as

spectrally redundant. In an effort to reduce computational

overhead, we compute superpixels for the input HSI data to

group neighboring pixels. We implement a straightforward

extension of the entropy-based superpixel segmentation ap-

proach proposed in [15]. Spectral measurements for individ-

ual pixels within a superpixel are averaged to form the spec-

tral response for that superpixel.

2.1. Classifier

Our goal in this paper is not to develop a new classifier but to

show that a few spectral channels perform surprisingly well.



So, we choose the most popular and common classifier–

support vector machines [16]–as the labeling function in (2).

SVM formulations can be constructed to create a non-

linear classifier [17] using a kernel to transform input data

into a higher dimensional feature space. We employ a Gaus-

sian radial basis function (defined entirely by one parameter,

γ) as the transformation kernel. SVM classifiers are highly

sensitive to the choice of kernel parameter γ and the soft-

margin cost C. We use exponentially increasing sequences

to perform a grid-search for the best combination of cost and

kernel parameters. Parameter estimation is completed inde-

pendently for each classification task.

Multi-class labeling is achieved by creating multiple bi-

nary classification problems. We employ a one-versus-one

scheme where the binary classifier discriminate between two

classes. Test samples are assigned to the label which performs

the best in the most head-to-head comparisons.

3. EXPERIMENTS

We validate our hypothesis using two scenes captured out-

doors on the University of Houston campus. The scenes were

acquired using a Headwall Photonics hyperspectral imager

which provided measurements in 325 spectral bands with a

spatial resolution of 1004×2500. The hyperspectral data uni-

formly spanned the visible and near-infrared spectrum from

400nm-1000nm. Each scene includes objects in 7 different

categories–vegetation, metal, concrete, pathway, skin, fabric,

and rubber. Ground truth labels were marked by hand for both

scenes.

Color image representations of the two scenes were syn-

thesized using the spectral profile of the e2v EV76C560 cam-

era sensor to provide a real-world RGB profile. The camera

sensor is used in machine vision cameras and is representa-

tive of the spectral response of many cameras. Each scene

includes a diffuse Spectralon calibration target with 99% re-

flectance in the wavelength range used in this study which

was used to apply white balancing to the color images. A

color representation of the scenes is shown in Figure 1; the

top scene was used for classifier training while the bottom

scene was reserved for testing the classifiers. Complex light-

ing in the scene resulted in acquiring spectral information for

scene elements under varying lighting conditions, i.e. in di-

rect sunlight and in shadow.

Benchmark accuracy was computed using the full HSI

data, RGB color filters, and RGB coupled with a broadband

near-infrared channel (as realized using the same camera sen-

sor with an IR pass filter). In addition, we compute classifi-

cation results using RGB and 3 narrowband channels, 6 nar-

rowband channels, and 6 optical filters. All of the use cases

were synthesized using the HSI data.
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Fig. 2. Classifier results: Object classification accuracy us-

ing 6 different imaging modalities and SVM classifier. Classi-

fication accuracy increases with the number of measurements

but faces diminishing returns. The three test cases using 6
measurements are within 3 percentage points of the hyper-

spectral classifier despite using only 2% of the measurements.

3.1. Classification Results

Training of the SVM classifier was conducted using a 5-fold

scheme where the training samples were randomly divided

into 5 groups. Training was then conducted using a leave

one out methodology, 4 groups are used to learn the support

vectors and the fifth group is used to test against. Parame-

ter estimation was completed using a grid-search with expo-

nentially increasing values for the cost and kernel parameter,

C ∈ {20, 21, . . . , 28}, γ ∈ {20, 21, . . . , 28}. SVM classifica-

tion tasks were executed using the LIBSVM library [18]. 916
samples were extracted from the top scene in Figure 1 to train

the classifier while 649 samples from the bottom scene were

used for testing.

Overall accuracy results are shown for the six use cases

in Figure 2. The results show a clear trend in the data—

incorporating more measurements improves overall accuracy.

As expected, using only three RGB broadband filters results

in the lowest overall accuracy, while having access to all 325
narrowband samples in the HSI data yields the best results.

Augmenting color images with side-channel informa-

tion greatly improves the classification accuracy. Adding

the broadband near-infrared channel accounts for half of the

difference in accuracy between RGB images and HSI data.

Adding three narrowband measurements to the RGB data of-

fers further improvement in accuracy, resulting in nearly 85%
of the samples being correctly identified. The three narrow-

band samples were selected using the previously mentioned

greedy selection algorithm to solve (3) after setting the first

three rows of the weighting matrix to match the red, green,

and blue spectral response curves of the e2v EV76C560
camera sensor. Interestingly, the solution favored measure-

ments from within the visible spectrum with the narrowband



Table 1. Confusion matrix for 6 optical filters using SVM

Class V M C P S F R Accuracy (%)

Vegetation 181 12 3 2 2 0 0 90.5

Metal 0 104 1 16 0 0 5 82.5

Concrete 0 4 32 11 0 0 0 68.0

Pathway 0 13 0 178 0 0 9 89.0

Skin 0 5 0 5 12 0 0 54.5

Fabric 0 0 0 0 0 21 0 100

Rubber 0 5 0 1 0 0 27 81.8

Accuracy (%) 100 72.7 88.9 83.6 85.7 100 65.8 86.4

Table 2. Confusion matrix for HSI using SVM

Class V M C P S F R Accuracy (%)

Vegetation 183 16 1 0 0 0 0 91.5

Metal 0 109 0 15 0 2 0 86.5

Concrete 0 3 31 13 0 0 0 66.0

Pathway 0 13 0 179 0 0 8 89.5

Skin 0 3 0 0 19 0 0 86.4

Fabric 0 0 0 0 0 21 0 100

Rubber 0 4 0 1 0 0 28 84.8

Accuracy (%) 100 73.6 96.9 86.1 100 91.3 77.8 87.7

samples located at 416nm, 466nm, and 641nm.

As seen in Figure 2, selecting 6 narrowband samples to

classify the scene is as accurate as using RGB and 3 narrow-

band filters and is within three percentage points of the HSI

benchmark. Unlike the RGB and 3 narrowband filters, the

distribution of measurements spans the entire spectrum and

is not concentrated within the visible range. The narrowband

samples are centered at 405nm, 419.5nm, 690nm, 767.5nm,

825nm, and 919.5nm.

The highest classification accuracy came from imaging

with 6 optical filters. The optical filter specifications were in-

spired by actual filters commonly available through commer-

cial retailers. We included 4 filter types (shortpass, longpass,

bandpass and band reject) with cut-off/cut-on/center wave-

lengths set every 25nm. The bandpass and band reject filters

had variable bandwidths of 25nm, 50nm, and 75nm at each

center wavelength.

Despite the plethora of choices available, the selected fil-

ters (chosen using a greedy approach) were all bandpass fil-

ters and 5 of the 6 had a bandwidth of 25nm. The distribu-

tion of the filters seems to follow the same general trend as

the six narrowband filters, with center wavelengths of 425nm,

450nm, 650nm, 725nm, 775nm, and 800nm. The filter cen-

tered at 650nm had a bandwidth of 50nm. With an overall

accuracy of 86.4% the six channels were 98.5% as accurate

at classification as HSI while using only 2% of the total num-

ber of measurements.

The confusion matrices shown in Table 1 and Table 2

show SVM classification performance using 6 optical filters

and HSI data respectively. The imaging modalities tend to

have similar strengths and weaknesses. The only significant

difference between the two is that HSI classification was able

to learn the sparsely represented skin class better than the 6
optical filters.
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Fig. 3. Spectral responses: The spectral response for the

various imaging modalities superimposed upon a representa-

tion of the spectrum sampled by the HSI. (a) shows the RGB

and NIR spectral responses, (b) shows RGB and three nar-

rowband filter locations (in white), (c) shows the location of

the six narrowband filters (in white), and (d) shows the loca-

tion and bandwidth of the six optical filters. The broadband

spectral curves have been normalized for clarity.

The distribution of spectral samples for the imaging

modalities are shown in Figure 3. The broadband red, green,

blue, and near-infrared channels have been normalized for

clarity. It is interesting to note that no measurements were

used between 500nm-600nm when solving (2). This suggests

that RGB classification is less likely to succeed since the

green channel provides little distinguishing information. In

fact, using just the red, blue, and near-infrared channels out-

performs the red, green, and blue channels in classification

accuracy (77.5% accuracy for RB+NIR vs 71% for RGB).

4. DISCUSSION AND FUTURE WORK

In this paper we showed that there is potential to greatly im-

prove the accuracy of material classification in natural scenes

by sampling only a few spectral channels. Specifically, using

6 bandpass filters may be sufficient to obtain classification ac-

curacy comparable to that of a hyperspectral imager but with-

out the need to capture hundreds of spectral measurements.

A fruitful course for future research is two-fold. First a com-

prehensive analysis is of narrowband HSI of natural scenes

is to determine the large-scale applicability of taking only a

few measurements for material classification. The second is

to build and test a prototype imaging system which operates

in the modalities described in this paper.
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