Toward Long Distance, Sub-Diffraction Imaging Using Coherent Camera Arrays

Jason Holloway[†], M Salman Asif[†], Manoj Kumar Sharma[‡], Nathan Matsuda[‡], Roarke Horstmeyer[§], Oliver Cossairt[‡], Ashok Veeraraghavan[†] Rice University, Houston TX [‡]Northwestern University, Evanston IL [§]California Institute of Technology, Pasadena CA

Goal: Improve Spatial Resolution

Improve spatial resolution beyond the diffraction limit in long-distance imaging

Solution presented here: use coherent light (active illumination) to synthetically increase aperture size

Limiting Factor in Spatial Resolution

In long-distance imaging, diffraction blur limits the maximum spatial resolution that can be achieved

Increasing diameter of the lens *drastically* increases weight and cost

Coherent Image Formation Model

Light passes through (or reflects off of) the scene, and undergoes a Fourier transform (Fraunhofer diffraction)

The camera lens acts as a bandpass filter and causes the light to undergo a second a Fourier transform onto the sensor plane

The sensor records the squared magnitude of the resulting field

Fourier Ptychography to Improve Spatial Resolution

Verifying resolution gains experimentally with a resolution target 1.5 meters away

Imaging a fingerprint deposited on glass (dusted)

 $\overline{400 \, \mu m}$

Observed Recovered magnitude and center image phase

$400 \, \mu \mathrm{m}$ $-1.4 \, \mathrm{mm}$

Detailed Observed center subsets image

— 1.4 mm

— 1.4 mm

Recovered magnitude and phase

Imaging a diffuse object which exhibits characteristic laser speckle

 $400\,\mu\mathrm{m}$

Detailed subsets

Increasing Spatial Resolution

Results

Built experimental prototype for transmissive Fourier ptychography

Demonstrated 7x increase in spatial resolution

1.5 meter separation between scene and camera platform

Successfully recovered high-resolution magnitude and phase for diffuse water bottle label

Limitations of Fourier Ptychography

Long sampling times (>60 minutes)

Large dynamic range, 50-100x difference in brightness

Must register images with sub-pixel accuracy

Precise shifting of the camera requires motorized translation stage

Future Work

Build a camera array for simultaneous image acquisition

Use multiplexed illumination to oversample Fourier domain

Enable hand-held acquisition

Extend to reflective mode prototype

For More Information

Download the paper, code, and images at the project webpage

Funding and acknowledgements

The authors would like to thank Richard Baranuik and Aggelos Katsaggelos for their thoughtful discussions and comments.

This work was supported in part by:
NSF grants IIS-1116718, CCF-1117939, CCF-1527501
NSF CAREER grant IIS-1453192
ONR grant 1(GG010550)/N00014-14-1-0741
Northwestern University McCormick Catalyst grant.

Phase Retrieval and Fourier Ptychography

