
Toward Long Distance, Sub-Di�raction Imaging Using Coherent Camera Arrays
Jason Holloway†, M Salman Asif†, Manoj Kumar Sharma‡, Nathan Matsuda‡, Roarke Horstmeyer§, Oliver Cossairt‡, Ashok Veeraraghavan†

†Rice University, Houston TX  ‡Northwestern University, Evanston IL  §California Institute of Technology, Pasadena CA

Fourier Ptychography to Improve Spatial Resolution
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Verifying resolution gains experimentally with a resolution target 1.5 meters away 
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Future Work

Limitations of Fourier 
Ptychography

Built experimental prototype for 
transmissive Fourier ptychography
Demonstrated 7x increase in spatial 
resolution
1.5 meter separation between scene 
and camera platform
Successfully recovered high-resolu-
tion magnitude and phase for di�use 
water bottle label

Long sampling times (>60 minutes)
Large dynamic range, 50-100x di�er-
ence in brightness
Must register images with sub-pixel 
accuracy
Precise shifting of the camera re-
quires motorized translation stage

http://jrholloway.com/projects/towardCCA

For More Information

Build a camera array for simultaneous 
image acquisition
Use multiplexed illumination to over-
sample Fourier domain
Enable hand-held acquisition
Extend to re�ective mode prototype

Download the paper, code, 
and images at the project 
webpage
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Goal: Improve Spatial Resolution

Limiting Factor in Spatial Resolution 

Coherent Image Formation Model

Improve spatial resolution beyond the di�raction 
limit in long-distance imaging

Solution presented here: use coherent light (active 
illumination) to synthetically increase aperture size

In long-distance imaging, di�raction blur limits the 
maximum spatial resolution that can be achieved

Increasing diameter of the lens drastically increases 
weight and cost

Light passes through (or re�ects o� of ) the scene, and un-
dergoes a Fourier transform (Fraunhofer di�raction)

The camera lens acts as a band-
pass �lter and causes the light to 
undergo a second a Fourier 
transform onto the sensor plane

The sensor records the squared 
magnitude of the resulting �eld
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Phase Retrieval and Fourier Ptychography
Oversampling the Fourier Domain Computationally Recovering Phase Information Increasing Spatial Resolution

Compute complex-field 
at camera planes

Enforce magnitudes

Compute high resolution Fourier domain 
image and enforce aperture constraint

Captured images

Convert to Fourier 
domain

Convert to spatial 
domain
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Based on Gerchberg-Saxton alternating projections phase retrieval algorithm 

Iterate for 
m = 1, . . . ,M 

iterations or until 
convergence
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SAS = 1.00
Increased resolution is directly proportional to the Synthetic aperture size (SAS)

Observed center image Recovered magnitude SAS = 2.12 SAS = 4.36 SAS = 5.48 SAS = 7.16
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Recovered magnitude and phaseObserved center 
image

Detailed subsetsRecovered magnitude and 
phase 
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center image
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Imaging a di�use object which exhibits characteristic laser speckleImaging a �ngerprint deposited on glass (dusted)


